Investigation on Compressive Strength Dispersion of Geopolymeric Recycled Aggregate Concrete
ZHOU Hongyuan1,2, MU Chongyuan1, WANG Xiaojuan1,*, LI Runlin1, CAO Wanlin1
1 Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China 2 State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China
Abstract: Prismatic geopolymeric recycled aggregate concrete (GRAC) specimens with a height-to-width ratio of 3 were prepared for the quasi-static compressive test. The specimens were designed with four different widths (70 mm, 100 mm, 150 mm, and 200 mm) and five distinct RCA replacement rates (0%, 30%, 50%, 70%, and 100%) to explore the influence of specimen size and recycled coarse aggregate (RCA) substitute rate on the compressive strength dispersion of GRAC. A predictive formula for the average compressive strength of different sizes of GRAC, considering the RCA substitute rate, was proposed based on the classical size effect law. The results showed that the compressive strength dispersion of GRAC decreased with an increase of specimen width. Furthermore, it was observed that the compressive strength dispersion of GRAC initially increased and then decreased as the RCA substitute rate increased. Additionally, a predictive formula for the compressive strength of GRAC with varying sizes and different RCA substitute rates, considering arbitrary reliability levels, was proposed based on the Weibull distribution model.
1 Wang J H, Huang Y, Yang G T, et al. Materials Reports, 2022, 36(S1), 278 (in Chinese). 王俊辉, 黄悦, 杨国涛, 等. 材料导报, 2022, 36(S1), 278. 2 Tang Z, Hu Y, Tam V W Y, et al. Cement and Concrete Composites, 2019, 104, 103375. 3 Skariah T B, Jian Y, Hung M K, et al. Journal of Building Engineering, 2021, 40, 102332. 4 Yang W, Liu H, Zhu P H, et al. Construction and Building Materials, 2023, 375, 130919. 5 Chen R Q, Zhang Z H, Shi C J. Materials Reports, 2023, 37(17), 174 (in Chinese). 陈汝琪, 张祖华, 史才军. 材料导报, 2023, 37(17), 174. 6 Tong G Q, Zhang W Y, Gao Y T, et al. Materials Reports, 2022, 36(4), 129 (in Chinese). 童国庆, 张吾渝, 高义婷, 等. 材料导报, 2022, 36(4), 129. 7 Wang J, Zheng C J, Mo L W, et al. Ceramics International, 2022, 48(10), 14076. 8 Van Jaarsveld J G S, Van Deventer J S J, Lukey G C. Materials Letters, 2003, 57(7), 1272. 9 Li J B, Xiao J Z, Sun Z P. Journal of Building Materials, 2004, 7(4), 390 (in Chinese). 李佳彬, 肖建庄, 孙振平. 建筑材料学报, 2004, 7(4), 390. 10 Waloddi W. Journal of Applied Mechanics, 1951, 18(3), 293. 11 Ding Z Y, Bian H G, Dong F X, et al. Science Technology and Engineering, 2022, 22(1), 324 (in Chinese). 丁兆洋, 边洪广, 董凤新, 等. 科学技术与工程, 2022, 22(1), 324. 12 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Recycled coarse aggregate for concrete, GB/T 25177-2010, China Standard Press, China, 2011, pp. 2 (in Chinese). 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 混凝土用再生粗骨料, GB/T 25177-2010, 中国标准出版社, 2011, pp. 2. 13 Song T Y, Qu X Y, Pan Z, et al. Fire Technology, 2022, 58(5), 2727. 14 Xiao J Z, Li J B, Lan Y. Concrete, 2003(10), 17 (in Chinese). 肖建庄, 李佳彬, 兰阳. 混凝土, 2003(10), 17. 15 Mihashi H, Izumi M. Cement and Concrete Research, 1977, 7(4), 411. 16 Zhang N, Hedayat A, Sosa H G B, et al. Construction and Building Materials, 2021, 281, 122525. 17 Jin L, Yu W X, Li D, et al. International Journal of Mechanical Sciences, 2021, 192, 106130. 18 Muciaccia G, Rosati G, Luzio D G. Construction and Building Materials, 2017, 137, 185. 19 Singh B, Rahman M R, Paswan R, et al. Construction and Building Materials, 2016, 118, 171. 20 Zhou H Y, Zhou H Z, Wang X J, et al. Structures, 2021, 34, 2996. 21 Pagnoncelli A P, Tridello A, Paolino D S. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(4), 997. 22 Dubey S, Ray S. Theoretical and Applied Fracture Mechanics, 2023, 127, 103993. 23 Jin L, Li J, Yu W X, et al. Engineering Fracture Mechanics, 2021, 253, 107870. 24 Lei W S. Journal of Materials Science, 2018, 53(2), 1227. 25 Liu Z, Cai C S, Peng H, et al. Journal of Materials in Civil Engineering, 2016, 28(9), 04016077. 26 Bazant Z P. Probabilistic Engineering Mechanics, 2004, 19(4), 307. 27 Bazant Z P. Journal of Engineering Mechanics-Asce, 1984, 110(4), 518. 28 Bazant Z P, Xiang Y J. Journal of Engineering Mechanics, 1997, 123(2), 162. 29 Carpinteri A. International Journal of Solids and Structures, 1994, 31(3), 291. 30 Li H, Yang D, Hu T. Buildings, 2023, 13(5), 13051309. 31 Guo Z H. Strength and deformation of concrete, Tsinghua University Press, China, 1977, pp. 5 (in Chinese). 过镇海. 混凝土的强度和变形, 清华大学出版社, 1997, pp. 5. 32 Chiaia B, Van Mier J G M, Vervuurt A. Cement and Concrete Research, 1998, 28(1), 103. 33 Akçaoğlu T. Construction and Building Materials, 2017, 143, 376. 34 Guinea G V, El-Sayed K, Rocco C G, et al. Cement and Concrete Research, 2002, 32(12), 1961. 35 Xiao J Z, Tang Y X, Chen H N, et al. Journal of Cleaner Production, 2022, 366, 132895. 36 Li J B, Xiao J Z, Huang J. Journal of Building Materials, 2006, 9(3), 297 (in Chinese). 李佳彬, 肖建庄, 黄健. 建筑材料学报, 2006, 9(3), 297. 37 Liu Y, Yang Q, Deng Y. Journal of Changsha University of Science and Technology, 2015, 12(1), 42 (in Chinese). 刘扬, 杨琴, 邓扬. 长沙理工大学学报, 2015, 12(1), 42. 38 Bagci C, Kutyla G P, Kriven W M. Ceramics International, 2017, 43(17), 14784. 39 Pettitt A N, Stephens M A. Technometrics, 1977, 19(2), 205.