Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23100132-8    https://doi.org/10.11896/cldb.23100132
  无机非金属及其复合材料 |
地聚物再生混凝土抗压强度的离散性分析
周宏元1,2, 母崇元1, 王小娟1,*, 李润琳1, 曹万林1
1 北京工业大学城市与安全减灾教育部重点实验室, 北京 100124
2 北京理工大学爆炸科学与安全防护国家重点实验室, 北京 100081
Investigation on Compressive Strength Dispersion of Geopolymeric Recycled Aggregate Concrete
ZHOU Hongyuan1,2, MU Chongyuan1, WANG Xiaojuan1,*, LI Runlin1, CAO Wanlin1
1 Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
2 State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China
下载:  全 文 ( PDF ) ( 21405KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究地聚物再生混凝土(Geopolymeric recycled aggregate concrete,GRAC)试件尺寸及再生粗骨料(Recycled coarse aggregate,RCA)替代率对其抗压强度离散性的影响,制备了五种RCA替代率(0%、30%、50%、70%和100%)、四种宽度(70 mm、100 mm、150 mm和200 mm)长宽比均为3的试件。基于经典尺寸效应律,提出了考虑RCA替代率的GRAC平均抗压强度尺寸效应预测公式,试验数据表明GRAC抗压强度的离散性随试件尺寸增大而减小,随RCA替代率的增加而先增大后减小。此外,基于Weibull分布模型,提出了任意保证率下具有不同RCA替代率的GRAC抗压强度尺寸效应预测公式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周宏元
母崇元
王小娟
李润琳
曹万林
关键词:  地聚物再生混凝土  抗压强度离散性  再生粗骨料替代率  尺寸效应  Weibull分布    
Abstract: Prismatic geopolymeric recycled aggregate concrete (GRAC) specimens with a height-to-width ratio of 3 were prepared for the quasi-static compressive test. The specimens were designed with four different widths (70 mm, 100 mm, 150 mm, and 200 mm) and five distinct RCA replacement rates (0%, 30%, 50%, 70%, and 100%) to explore the influence of specimen size and recycled coarse aggregate (RCA) substitute rate on the compressive strength dispersion of GRAC. A predictive formula for the average compressive strength of different sizes of GRAC, considering the RCA substitute rate, was proposed based on the classical size effect law. The results showed that the compressive strength dispersion of GRAC decreased with an increase of specimen width. Furthermore, it was observed that the compressive strength dispersion of GRAC initially increased and then decreased as the RCA substitute rate increased. Additionally, a predictive formula for the compressive strength of GRAC with varying sizes and different RCA substitute rates, considering arbitrary reliability levels, was proposed based on the Weibull distribution model.
Key words:  geopolymeric recycled aggregate concrete    compressive strength dispersion    recycled coarse aggregate substitute rate    size effect    Weibull distribution
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52278477;52178096);国家重点研发计划(2019YFD1101005)
通讯作者:  *王小娟,北京工业大学城建学部副教授。2013 年 2 月毕业于新加坡国立大学,获博士学位。主要从事建筑材料和结构力学性能、抗爆抗冲击牺牲结构、结构健康监测和损伤识别等研究工作。xiaojuanwang@bjut.edu.cn   
作者简介:  周宏元,北京工业大学城建学部教授。2012年7月毕业于新加坡南洋理工大学,获博士学位。主要从事结构在爆炸、冲击、震动等极端载荷下响应与防护领域的研究。
引用本文:    
周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
ZHOU Hongyuan, MU Chongyuan, WANG Xiaojuan, LI Runlin, CAO Wanlin. Investigation on Compressive Strength Dispersion of Geopolymeric Recycled Aggregate Concrete. Materials Reports, 2025, 39(1): 23100132-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100132  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23100132
1 Wang J H, Huang Y, Yang G T, et al. Materials Reports, 2022, 36(S1), 278 (in Chinese).
王俊辉, 黄悦, 杨国涛, 等. 材料导报, 2022, 36(S1), 278.
2 Tang Z, Hu Y, Tam V W Y, et al. Cement and Concrete Composites, 2019, 104, 103375.
3 Skariah T B, Jian Y, Hung M K, et al. Journal of Building Engineering, 2021, 40, 102332.
4 Yang W, Liu H, Zhu P H, et al. Construction and Building Materials, 2023, 375, 130919.
5 Chen R Q, Zhang Z H, Shi C J. Materials Reports, 2023, 37(17), 174 (in Chinese).
陈汝琪, 张祖华, 史才军. 材料导报, 2023, 37(17), 174.
6 Tong G Q, Zhang W Y, Gao Y T, et al. Materials Reports, 2022, 36(4), 129 (in Chinese).
童国庆, 张吾渝, 高义婷, 等. 材料导报, 2022, 36(4), 129.
7 Wang J, Zheng C J, Mo L W, et al. Ceramics International, 2022, 48(10), 14076.
8 Van Jaarsveld J G S, Van Deventer J S J, Lukey G C. Materials Letters, 2003, 57(7), 1272.
9 Li J B, Xiao J Z, Sun Z P. Journal of Building Materials, 2004, 7(4), 390 (in Chinese).
李佳彬, 肖建庄, 孙振平. 建筑材料学报, 2004, 7(4), 390.
10 Waloddi W. Journal of Applied Mechanics, 1951, 18(3), 293.
11 Ding Z Y, Bian H G, Dong F X, et al. Science Technology and Engineering, 2022, 22(1), 324 (in Chinese).
丁兆洋, 边洪广, 董凤新, 等. 科学技术与工程, 2022, 22(1), 324.
12 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Recycled coarse aggregate for concrete, GB/T 25177-2010, China Standard Press, China, 2011, pp. 2 (in Chinese).
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 混凝土用再生粗骨料, GB/T 25177-2010, 中国标准出版社, 2011, pp. 2.
13 Song T Y, Qu X Y, Pan Z, et al. Fire Technology, 2022, 58(5), 2727.
14 Xiao J Z, Li J B, Lan Y. Concrete, 2003(10), 17 (in Chinese).
肖建庄, 李佳彬, 兰阳. 混凝土, 2003(10), 17.
15 Mihashi H, Izumi M. Cement and Concrete Research, 1977, 7(4), 411.
16 Zhang N, Hedayat A, Sosa H G B, et al. Construction and Building Materials, 2021, 281, 122525.
17 Jin L, Yu W X, Li D, et al. International Journal of Mechanical Sciences, 2021, 192, 106130.
18 Muciaccia G, Rosati G, Luzio D G. Construction and Building Materials, 2017, 137, 185.
19 Singh B, Rahman M R, Paswan R, et al. Construction and Building Materials, 2016, 118, 171.
20 Zhou H Y, Zhou H Z, Wang X J, et al. Structures, 2021, 34, 2996.
21 Pagnoncelli A P, Tridello A, Paolino D S. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(4), 997.
22 Dubey S, Ray S. Theoretical and Applied Fracture Mechanics, 2023, 127, 103993.
23 Jin L, Li J, Yu W X, et al. Engineering Fracture Mechanics, 2021, 253, 107870.
24 Lei W S. Journal of Materials Science, 2018, 53(2), 1227.
25 Liu Z, Cai C S, Peng H, et al. Journal of Materials in Civil Engineering, 2016, 28(9), 04016077.
26 Bazant Z P. Probabilistic Engineering Mechanics, 2004, 19(4), 307.
27 Bazant Z P. Journal of Engineering Mechanics-Asce, 1984, 110(4), 518.
28 Bazant Z P, Xiang Y J. Journal of Engineering Mechanics, 1997, 123(2), 162.
29 Carpinteri A. International Journal of Solids and Structures, 1994, 31(3), 291.
30 Li H, Yang D, Hu T. Buildings, 2023, 13(5), 13051309.
31 Guo Z H. Strength and deformation of concrete, Tsinghua University Press, China, 1977, pp. 5 (in Chinese).
过镇海. 混凝土的强度和变形, 清华大学出版社, 1997, pp. 5.
32 Chiaia B, Van Mier J G M, Vervuurt A. Cement and Concrete Research, 1998, 28(1), 103.
33 Akçaoğlu T. Construction and Building Materials, 2017, 143, 376.
34 Guinea G V, El-Sayed K, Rocco C G, et al. Cement and Concrete Research, 2002, 32(12), 1961.
35 Xiao J Z, Tang Y X, Chen H N, et al. Journal of Cleaner Production, 2022, 366, 132895.
36 Li J B, Xiao J Z, Huang J. Journal of Building Materials, 2006, 9(3), 297 (in Chinese).
李佳彬, 肖建庄, 黄健. 建筑材料学报, 2006, 9(3), 297.
37 Liu Y, Yang Q, Deng Y. Journal of Changsha University of Science and Technology, 2015, 12(1), 42 (in Chinese).
刘扬, 杨琴, 邓扬. 长沙理工大学学报, 2015, 12(1), 42.
38 Bagci C, Kutyla G P, Kriven W M. Ceramics International, 2017, 43(17), 14784.
39 Pettitt A N, Stephens M A. Technometrics, 1977, 19(2), 205.
[1] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[2] 李辰治, 蒋林华. 石灰石粉掺量对混凝土中钢筋脱钝临界氯离子含量的影响[J]. 材料导报, 2024, 38(1): 22090288-7.
[3] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[4] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[5] 潘旺, 夏洋洋, 张超, 方宏远, 王复明. 新型聚氨酯弹性体注浆材料的压缩尺寸效应及应变率效应[J]. 材料导报, 2023, 37(15): 22020115-7.
[6] 孟祥晖, 冯琼, 张云升, 乔宏霞, 谢晓扬. 盐渍土环境下钢筋混凝土腐蚀劣化行为及竞争失效分析[J]. 材料导报, 2023, 37(14): 22010281-10.
[7] 黄健康, 刘玉龙, 刘光银, 杨茂鸿, 樊丁. 微纳米尺度单晶铜各向异性纳米力学分析[J]. 材料导报, 2021, 35(24): 24117-24121.
[8] 周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
[9] 路承功, 魏智强, 乔宏霞, 曹辉, 乔国斌. 盐渍土通电环境中钢筋混凝土损伤劣化及尺寸效应试验研究[J]. 材料导报, 2021, 35(16): 16042-16049.
[10] 郝新超, 薛斌. 复合材料疲劳强度分布与疲劳验证载荷放大系数[J]. 材料导报, 2020, 34(Z2): 447-452.
[11] 张宝庆, 庞壮, 韦赟杰, 于硕. 中阶梯光栅厚铝膜纳米压痕硬度尺寸效应测试与分析[J]. 材料导报, 2020, 34(Z1): 341-344.
[12] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[13] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[14] 张玉, 黄晓锋, 马颖, 闫峰云, 李元东, 郝远. 添加Sm对不同尺寸Mg-6Zn-0.4Zr镁合金坯料非枝晶组织演变的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1283-1288.
[15] 陈渊, 蓝永庭, 张克实, 蔡敢为, 胡桂娟. AZ31镁合金微结构关联的孪生形核与长大统计分析[J]. 材料导报, 2018, 32(20): 3566-3572.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed