Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22070248-7    https://doi.org/10.11896/cldb.22070248
  无机非金属及其复合材料 |
碱渣改性充填体早期力学特性及能量演化特征
孙海宽1,2, 甘德清1,2,*, 薛振林1,2, 刘志义1,2, 张雅洁1,2
1 华北理工大学矿业工程学院,河北 唐山 063200
2 华北理工大学河北省矿业开发与安全技术重点实验室,河北 唐山 063200
Early Mechanical Properties and Energy Evolution Characteristics of Alkali Slag Modified Backfill
SUN Haikuan1,2, GAN Deqing1,2,*, XUE Zhenlin1,2, LIU Zhiyi1,2, ZHANG Yajie1,2
1 College of Mining Engineering, North China University of Technology, Tangshan 063200, Hebei, China
2 Mining Development and Safety Technology Key Laboratory of Hebei Province, North China University of Technology, Tangshan 063200, Hebei, China
下载:  全 文 ( PDF ) ( 4885KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究碱渣改性充填体的早期力学特性及能量演化特征,利用WHY-600压力机开展了单轴压缩试验,分析了其抗压强度、弹性模量、破裂模式及能量变化,结合响应曲面法,对质量浓度、尾砂级配及碱渣添加量进行寻优分析。结果表明:随碱渣添加量增加,充填体失稳破坏位移量、单轴抗压强度、弹性模量先增大后减小,当碱渣添加量为5%时,充填体抗压强度大,抵抗变形能力强;随碱渣添加量增加,充填体耗散能、弹性变形能、峰值强度下单位体积应变能及总能量均先增加后减小;单轴压缩条件下,碱渣改性充填体破坏模式为半贯穿或贯穿的斜剪切、平行双裂隙以及倒Y型裂隙,破坏程度随碱渣添加量增加而增大;建议采用质量浓度77%、细粗尾砂级配3∶7、碱渣添加量5.35%的配比来制备碱渣改性充填体,经计算其抗压强度为5.345 8 MPa,能满足矿山早期生产需求。研究结果为碱渣改性材料的可行性提供了一定的理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙海宽
甘德清
薛振林
刘志义
张雅洁
关键词:  碱渣改性充填体  单轴抗压强度  能量演化特征  破裂模式  配比参数寻优    
Abstract: To investigate the early mechanical properties and energy evolution characteristics of the alkali slag modified backfill, uniaxial compression test was carried out using WHY-600 press to analyze the compressive strength, elastic modulus, failure mode and energy change. Combined with the response surface methodology, the mass concentration, tailings gradation and alkali slag addition were analyzed to optimize the results. The results show that with the increase of alkali slag addition, the instability damage displacement, uniaxial compressive strength and elastic modulus of the backfill first increase and then decrease. When the amount of alkali slag addition is 5%, the backfill has high compressive strength and strong resistance to deformation. The dissipation energy, elastic deformation energy, strain energy per unit volume at peak strength and total energy of the backfill increase and then decrease with the increase of alkali slag addition. Under uniaxial compression, the failure model of the alkali slag modified backfill is semi-penetrating or penetrating oblique shear, parallel double crack and inverted Y-shaped fracture, and the degree of damage increases with the increase of alkali slag addition. It is recommended to prepare alkali slag modified backfill with 77% mass concentration, 3∶7 fine and coarse tailings gradation, and 5.35% alkali slag addition, and the calculated compressive strength is 5.345 8 MPa, which can satisfy the early production demand of the mine. The results provide some theoretical basis for the feasibility of alkali slag modified materials.
Key words:  alkali slag modified backfill    uniaxial compressive strength    energy evolution characteristic    failure model    proportional parameters optimization
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TD853  
基金资助: 河北省博士研究生创新资助项目(CXZZBS2023127);国家自然科学基金(51774137;52074124)
通讯作者:  * 甘德清,博士,华北理工大学矿业工程学院教授、博士研究生导师,研究方向为采矿工艺理论与技术、资源绿色开发与智能采矿。近年来发表学术论文90余篇,获授权发明专利16项,获国家科技进步二等奖1项。g15613873876@163.com   
作者简介:  孙海宽,2021年3月于华北理工大学矿业工程学院获得工学硕士学位。2021年9月至今为华北理工大学矿业工程学院博士研究生,指导教师为甘德清教授。研究方向为资源绿色开发与智能采矿。
引用本文:    
孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
SUN Haikuan, GAN Deqing, XUE Zhenlin, LIU Zhiyi, ZHANG Yajie. Early Mechanical Properties and Energy Evolution Characteristics of Alkali Slag Modified Backfill. Materials Reports, 2024, 38(9): 22070248-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070248  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22070248
1 Miao C, Liang L X, Zhang F, et al. International Journal of Minerals Metallurgy and Materials, 2022, 29(3), 424.
2 Panagiotis G K, Eleni V, Eirini C,et al. Journal of Environmental Sciences, 2021, 99(1), 222.
3 Wellars U, Yang L, Muhammad K T, et al. Chinese Chemical Letters, 2020, 31(6), 1474.
4 Hou Y Q, Yin S H, Zhao G L, et al. Materials Reports, 2021, 35(19), 19030 (in Chinese).
侯永强, 尹升华, 赵国亮, 等. 材料导报, 2021, 35(19), 19030.
5 Zhen G Y, Zhou H Y, Zhao T T, et al. Chinese Journal of Chemical Engineering, 2012, 20(1), 80.
6 Wang Q P, Wang H, Kan F F. Materials Reports, 2015, 29(14), 135 (in Chinese).
王庆平, 王辉, 闵凡飞. 材料导报, 2015, 29(14), 135.
7 Cheng Q Q, Wang H D, Yin Q X, et al. Mining Safety & Environmental Protection,2024,51(1),161(in Chinese).
程强强,汪浩东,阴琪翔,等.矿业安全与环保,2024,51(1),161.
8 Chen Y Z, Pu X C, Yang C H, et al. Journal of Wuhan University of Technology-Materials Science, 2002(3), 60.
9 Stark J, Freyburg E. Journal of Wuhan University of Technology-Materials Science, 2010, 25(2), 332.
10 Li G N, Wang B M, Liu H. Journal of Wuhan University of Technology-Materials Science, 2019, 34(1), 114.
11 Liu Q, Zhang J K, Su Y W, et al. Journal of Wuhan University of Technology-Materials Science, 2021, 36(6), 871.
12 Zhao X H, Liu C Y, Zuo L M. Journal of Yangtze River Scientific Research Institute, 2018, 35(8), 72 (in Chinese).
赵献辉, 刘春原, 左丽明. 长江科学院院报, 2018, 35(8), 72.
13 Wu P, Zhang T, Geng Y Q, et al. China Powder Science and Technology, 2022, 28(1), 35 (in Chinese).
吴蓬, 张涛, 耿玉倩, 等. 中国粉体技术, 2022, 28(1), 35.
14 Hania M, Nader S, Pooria G, et al. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2), 576.
15 Ji G D, Yang C H, Liu W, et al. Rock and Soil Mechanics, 2015, 36(8), 2169 (in Chinese).
冀国栋, 杨春和, 刘伟, 等. 岩土力学, 2015, 36(8), 2169.
16 Wang B M, Wang W L, Liang X X, et al. Journal of Wuhan University of Technology-Materials Science, 2021, 36(3), 364.
17 Sun W J, Yin W, Ouyang S Y, et al. Safety in Coal Mines, 2022, 53(2), 20 (in Chinese).
孙文杰, 殷伟, 欧阳神央, 等. 煤矿安全, 2022, 53(2), 20.
18 Sun X J, Liu J, Qiu J P, et al. Construction and Building Materials, 2022, 320, 126234.
19 Jiang H Q, Qi Z J, Yilmaz E, et al. Construction and Building Mate-rials, 2019, 218(10), 689.
20 Zhang S Y, Ren F Y, Zhao Y L, et al. Construction and Building Mate-rials, 2021, 283(6), 122686.
21 Cihangir F, Ercikdi B, Kesimal A, et al. Minerals Engineering, 2015, 83, 117.
22 Behera S K, Mishra D P, Singh P, et al. Construction and Building Materials, 2021, 309, 125120.
23 Sun S L, Zheng Q H, Tang J, et al. Rock and Soil Mechanics, 2012, 33(6), 1608 (in Chinese).
孙树林, 郑青海, 唐俊, 等. 岩土力学, 2012, 33(6), 1608.
24 Zhang X M, Hu S G, Yuan P. Journal of Anhui University of Science and Technology (Natural Science), 2020, 40(4), 67 (in Chinese).
张旭梦, 胡术刚, 袁鹏. 安徽理工大学学报(自然科学版), 2020, 40(4), 67.
25 Feng G R, Xie W S, Guo Y X, et al. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(4), 775 (in Chinese).
冯国瑞, 解文硕, 郭育霞, 等. 岩石力学与工程学报, 2022, 41(4), 775.
26 Zhao K, Song Y F, Yu X, et al. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(2), 282 (in Chinese).
赵康, 宋宇峰, 于祥, 等. 岩石力学与工程学报, 2022, 41(2), 282.
27 Ghirian A, Fall M. International Journal of Mining Science and Technology, 2016, 26(5), 809.
28 Hou C, Zhu W C, Yan B X, et al. Construction and Building Materials, 2020, 239, 117752.
29 Yin S H, Hou Y Q, Yang S X, et al. Journal of Central South University (Science and Technology), 2021, 52(3), 936 (in Chinese).
尹升华, 侯永强, 杨世兴, 等. 中南大学学报(自然科学版), 2021, 52(3), 936.
30 Xie H P, Ju Y, Li L Y. Chinese Journal of Rock Mechanics and Enginee-ring, 2005, 24(17), 3003 (in Chinese).
谢和平, 鞠杨, 黎立云. 岩石力学与工程学报, 2005, 24(17), 3003.
[1] 宋春鹏, 由爽, 纪洪广, 孙利辉. 相似材料抗压强度正交试验与材料强度影响系数研究[J]. 材料导报, 2023, 37(23): 22090218-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed