Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22080080-7    https://doi.org/10.11896/cldb.22080080
  无机非金属及其复合材料 |
偏高岭土基地聚合物对水泥固化红黏土的改善机制
王志良, 陈玉龙, 申林方*, 施辉盟
昆明理工大学建筑工程学院,昆明 650500
Improvement Mechanism of Metakaolin-based Geopolymer on Cement Stabilized Red Clay
WANG Zhiliang, CHEN Yulong, SHEN Linfang*, SHI Huimeng
Faculty of Civil and Architectural Engineering, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 14069KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究偏高岭土对水泥固化红黏土的改善效果,开展了三种组合(纯水泥、水泥+偏高岭土以及水泥+偏高岭土+水玻璃)的红黏土固化试验。基于固化剂化学组分和固化土的干密度、pH值以及物相成分等,研究了新型复合碱激发体系作用下偏高岭土对水泥固化红黏土的作用机理。研究表明:当水泥、偏高岭土和水玻璃掺入比分别为12%、5%和3%时,红黏土固化效果最佳,相比于纯水泥固化土其强度提高了2.82倍。在n(SiO2)/n(Al2O3)从2.53增加至4.05过程中,固化土强度发展较快,随后逐渐趋于稳定。由于水泥水化生成的Ca2+能够平衡固化体系中的部分负电荷,在n(Na2O)/n(Al2O3)较小的情况下固化土强度得到了显著提升。最后通过固化土微观形貌及主要物相组成发现,新型复合碱激发体系的试样中含有无定形地聚物凝胶且主要物相特征峰峰值有所降低,说明产生了更多的地聚合凝胶产物。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王志良
陈玉龙
申林方
施辉盟
关键词:  红黏土  地聚合物  偏高岭土  无侧限抗压强度  土体加固    
Abstract: The stabilized tests of three combinations (pure cement, cement+metakaolin and cement+metakaolin+sodium silicate) were carried out to study the improvement effect of metakaolin on cement stabilized red clay. Based on the component content of the stabilization agent, the dry density, pH value and mineral composition of the stabilized soil, the stabilization mechanism of metakaolin on cement stabilized red clay was stu-died under the action of a new composite alkali excitation system. The results showed that when the contents of cement, MK and sodium silicate were 12%, 5% and 3%, respectively, the stabilized effect of red clay was the best, and its strength was 2.82 times higher than that of pure cement stabilized soil. When n(SiO2)/n(Al2O3) increased from 2.53 to 4.05, the unconfined compressive strength of stabilized soil developed rapidly, and then tended to stable gradually. As Ca2+ generated by cement hydration could balance part of the negative charge in the stabilizing system, the strength of the stabilized soil had been improved significantly when n(Na2O)/n(Al2O3) was small. Finally, through the micro-morphology and main phase composition of the stabilized soil, it is found that the sample of the new composite alkali activation system contains amorphous geopolymer gel and the characteristic peak value of the main minerals decreases, indicating that more geopolymerized gel products are produced.
Key words:  red clay    geopolymer    metakaolin    unconfined compressive strength    soil stabilization
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TU472  
基金资助: 国家自然科学基金(42067043;42167022;11962008)
通讯作者:  *申林方,昆明理工大学建筑工程学院教授。2010年6月取得中国科学院武汉岩土力学研究所岩土工程专业博士学位。2010年至今主要从事岩土工程方面的研究,主持国家自然科学基金3项、中国博士后科学基金1项、云南省应用基础研究计划项目2项,在国内外期刊上发表文章30余篇。linfangshen@126.com   
作者简介:  王志良,昆明理工大学建筑工程学院教授、博士研究生导师。2010年同济大学隧道及地下建筑工程专业博士毕业。目前主要从事隧道及地下建筑工程方面的研究工作。主持国家自然科学基金3项,2018年获云南省“万人计划”青年拔尖人才专项,在国内外期刊上发表文章40余篇,以第一完成人获得授权专利3项。
引用本文:    
王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
WANG Zhiliang, CHEN Yulong, SHEN Linfang, SHI Huimeng. Improvement Mechanism of Metakaolin-based Geopolymer on Cement Stabilized Red Clay. Materials Reports, 2024, 38(8): 22080080-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080080  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22080080
1 Zou F, Xia Y. Yangtze River, 2011, 42(15), 58(in Chinese).
邹飞, 夏怡. 人民长江, 2011, 42(15), 58.
2 Liu B C, Li C J, Pan Z Y, et al. Journal of Engineering Geology, 2012, 20(4), 633(in Chinese).
刘宝臣, 李翠娟, 潘宗源, 等. 工程地质学报, 2012, 20(4), 633.
3 Gong Z L, Sun G C, Hu Y F, et al. Soil Engineering and Foundation, 2018, 32(6), 633(in Chinese).
龚子龙, 孙刚臣, 胡跃发, 等. 土工基础, 2018, 32(6), 633.
4 Worrell E, Price L, Martin N, et al. Annual Review of Energy and the Environment, 2003, 26(1), 303.
5 Wang B Y, Yao W. Materials Reports, 2017, 31(5), 123(in Chinese).
王博元, 姚武. 材料导报, 2017, 31(5), 123.
6 Wang S F, Ma X, Zhang Z H, et al. Materials Reports, 2018, 32(16), 2757(in Chinese).
王顺风, 马雪, 张祖华, 等. 材料导报, 2018, 32(16), 2757.
7 Zhou H L, Liang Y J, Li B, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(9), 2858(in Chinese).
周海龙, 梁玉婧, 李波, 等. 硅酸盐通报, 2020, 39(9), 2858.
8 Huang X M, Rao J L, Du K. Mining Safety & Environmental Protection, 2023, 50(6), 92(in Chinese).
黄学满, 饶吉来, 杜凯. 矿业安全与环保, 2023, 50(6), 92.
9 Zhou H Y, Wang X S, Hu X X, et al. Rock and Soil Mechanics, 2021, 42(8), 2089(in Chinese).
周恒宇, 王修山, 胡星星, 等. 岩土力学, 2021, 42(8), 2089.
10 Luo Y P, Meng J H, Wang D F, et al. Construction and Building Materials, 2022, 316, 125662.
11 Khadka S D, Jayawickrama P W, Senadheera S, et al. Transportation Geotechnics, 2020, 23, 100327.
12 Deng Y F, Wu Z L, Liu S Y, et al. Chinese Journal of Geotechnical Engineering, 2016, 38(3), 446(in Chinese).
邓永锋, 吴子龙, 刘松玉, 等. 岩土工程学报, 2016, 38(3), 446.
13 Ma D D, Ma Q Y, Huang K, et al. Chinese Journal of Geotechnical Engineering, 2021, 43(3), 572(in Chinese).
马冬冬, 马芹永, 黄坤, 等. 岩土工程学报, 2021, 43(3), 572.
14 Wu Z L, Deng Y F, Liu S Y, et al. Applied Clay Science, 2016, 127, 44.
15 Guo Q, Wei M L, Du G Y, et al. Journal of China University of Mining and Technology, 2018, 47(4), 838(in Chinese).
郭乾, 魏明俐, 杜广印, 等. 中国矿业大学学报, 2018, 47(4), 838.
16 Ye H Y, Zhang W F, Wei W, et al. Journal of Basic Science and Engineering, 2019, 27(4), 906(in Chinese).
叶华洋, 张伟锋, 韦未, 等. 应用基础与工程科学学报, 2019, 27(4), 906.
17 Guo Q, Wei M L, Wu H L, et al. Construction and Building Materials, 2020, 236, 117567.
18 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. GB/T 50123-2019. 土工试验方法标准, 中国计划出版社, 2019.
19 中华人民共和国住房和城乡建设部. GB/T 233-2011. 水泥土配合比设计规程, 中国建筑工业出版社, 2011.
20 Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, et al. Cement and Concrete Research, 2011, 41(9), 923.
21 He J, Wang X Q, Su Y, et al. Journal of Materials in Civil Engineering, 2019, 31(3), 06018029.
22 Zhang M, Guo H, El-Korchi T, et al. Construction and Building Mate-rials, 2013, 47, 1468.
[1] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[2] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[3] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[4] 徐俊, 康爱红, 吴正光, 龚泳帆, 寇长江, 吴帮伟, 张垚, 肖鹏. 高性能再生微粉基地聚合物注浆料的活化制备及性能研究[J]. 材料导报, 2024, 38(22): 24060235-6.
[5] 范旭涵, 王炳楠, 汤世豪, 辛星, 裴妍. 磷酸镁水泥加固低液限粉土的pH和电导率响应与孔隙特征研究[J]. 材料导报, 2024, 38(16): 23080046-9.
[6] 宋学锋, 杨尔康. 石膏/偏高岭土对二次铝灰中氟离子的固化研究[J]. 材料导报, 2023, 37(7): 21090018-6.
[7] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[8] 叶家元, 李国豪, 史迪, 任雪红, 吴春丽, 张洪滔, 张文生. 矿渣/偏高岭土复合前驱体原位转化沸石的影响因素研究[J]. 材料导报, 2023, 37(21): 22040092-8.
[9] 樊晋源, 李茂森, 段平, 陈伟, 张祖华. 氧化石墨烯增强地聚物抗硫酸盐侵蚀性能研究[J]. 材料导报, 2023, 37(13): 22030196-5.
[10] 马彬, 衣兆林, 牛海华, 黄启钦. 高温下SiO2气凝胶改性地聚合物的物理力学性能研究[J]. 材料导报, 2023, 37(10): 21110251-6.
[11] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[12] 范利丹, 孙亮, 余永强, 张纪云, 郭佳奇. 偏高岭土提高水泥基注浆材料在高地温隧道工程中的适应性[J]. 材料导报, 2022, 36(6): 20100228-8.
[13] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[14] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[15] 李爽, 刘和鑫, 杨永, 李青, 张之璐, 朱效宏, 杨长辉, 杨凯. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed