Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22060304-6    https://doi.org/10.11896/cldb.22060304
  无机非金属及其复合材料 |
偏铝酸钠对单组分地聚水泥的性能调控及水化机理
唐宁1, 王延军1, 赵明宇1, 孙艺涵2, 王晴1,*
1 沈阳建筑大学材料科学与工程学院,沈阳 110168
2 浙江省交通运输科学研究院,杭州 310023
Performance and Hydration of One-part Geopolymer Activated with NaAlO2
TANG Ning1, WANG Yanjun1, ZHAO Mingyu1, SUN Yihan2, WANG Qing1,*
1 School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2 Zhejiang Scientific Research Institute of Transport, Hangzhou 310023, China
下载:  全 文 ( PDF ) ( 5702KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 地聚水泥是一种新型胶凝材料,与普通硅酸盐水泥相比,具有绿色环保、节能低碳、性能优异等诸多技术优势。目前,地聚水泥主要由原材料粉体与碱溶液双组分混合所得,导致腐蚀性和高粘度碱溶液运输条件苛刻,且现场施工不易控制,因而在土木工程中难以大规模应用。本工作以偏铝酸钠(NaAlO2)对单组分地聚水泥的性能调控及水化机理为研究目标。在地聚水泥中,将碱溶液改为固体碱激发剂,并引入原材料粉体质量2%的NaAlO2改善其工作性能。研究表明,NaAlO2水解速度快,可在反应初期产生富Al反应环境,并快速形成水化硅铝酸钙,使得单组分地聚水泥在强度不变的情况下,凝结时间得到延长,工作性能得到改善,且微观结构也趋于凝胶化、致密化。可见,少量NaAlO2的引入有利于突破当前双组分地聚水泥的应用技术瓶颈,推动地聚水泥在工程中的大规模应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐宁
王延军
赵明宇
孙艺涵
王晴
关键词:  地聚合物  水泥  单组分  偏铝酸钠  水化机理    
Abstract: Geopolymer is a new type of cementitious material. Compared with ordinary Portland cement, it has many technical advantages such as green environmental protection, energy saving and low carbon, and excellent performance. At present, geopolymeris manufactured with two-parts materials including alumina-silicate materials and aqueous alkali, which leads to harsh transportation conditions, and difficult to control construction in site. Therefore, it is difficult to apply in civil engineering on a large scale. In view of this, the present work aims to study the performance regulation and hydration mechanism of NaAlO2 on one-part geopolymer. In the raw materials of geopolymer, the alkali solution was changed to a solid alkali activator, and NaAlO2 with 2% of raw material powder was employed to improve its workability. The results reveal that NaAlO2 has a fast hydrolysis rate, and it is easy to generate an Al-rich reaction environment in the early stage of the reaction, and quickly form hydrated calcium aluminosilicate, so that the one-part geopolymer can prolong the setting time without changing the compressive strength, and the microstructure also tends to gel and densify. Hence, the adding of a small amount of NaAlO2 is conducive to breaking through the technical bottleneck of the current application of two-parts geopolymer and promoting the large-scale application of geopolymer in engineering.
Key words:  geopolymer    cement    one-part    NaAlO2    hydration
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TU52  
基金资助: 国家自然科学基金(52278453;52278266);辽宁省自然科学基金(2021-MS-245);兴辽英才计划(XLYC2007176)
通讯作者:  *王晴,沈阳建筑大学材料科学与工程学院二级教授、博士研究生导师。目前主要从事固体废弃物在建筑材料中的资源化利用等方面的研究工作。发表论文100余篇,包括Construction and Building Materials、Journal of Cleaner Production等。wangqingmxy@126.com   
作者简介:  唐宁,2007年6月,2014年6月于武汉理工大学获得工学学士学位和博士学位。现为沈阳建筑大学材料科学与工程学院教授,香江学者。目前主要研究领域为固体废弃物在建筑材料中的资源化利用。
引用本文:    
唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
TANG Ning, WANG Yanjun, ZHAO Mingyu, SUN Yihan, WANG Qing. Performance and Hydration of One-part Geopolymer Activated with NaAlO2. Materials Reports, 2024, 38(8): 22060304-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060304  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22060304
1 Li D,Zheng W,Liu Y W.Chinese Cement,2022(5),82(in Chinese).
李丹,郑伟,刘彦伟.中国水泥,2022(5),82.
2 Davidovits J.Journal of Thermal Analysis,1991,37(8),1633.
3 Davidovits J.Journal of Thermal Analysis,1989,35(2),429.
4 Hajimohammadi A,Provis J L,Van Deventer J S J.Industrial & Enginee-ring Chemistry Research,2008,47(23),9396.
5 Ma C,Zhao B,Guo S,et al.Journal of Cleaner Production,2019,220,188.
6 Hajimohammadi A,van Deventer J S J.Waste and Biomass Valorization,2017,8(1),225.
7 Ma C,Long G,Shi Y,et al.Journal of Cleaner Production,2018,201,636.
8 Dong M,Elchalakani M,Karrech A.Construction and Building Materials,2020,236,117611.
9 Zhang H Y,Liu J C,Wu B.Construction and Building Materials,2021,273,121973.
10 Nematollahi B,Sanjayan J,Shaikh F U A.Ceramics International,2015,41(4),5696.
11 Wang Y S,Alrefaei Y,Dai J G.Construction and Building Materials,2021,306,124880.
12 Ooi W N,Liew Y M,Heah C Y,et al.Journal of Materials Research and Technology,2021,15,3850.
13 Li H C,Fu B.Handbook of practical chemistry,Chemical Industry Press,China,2007,pp.267(in Chinese).
李华昌,符斌.实用化学手册,化学工业出版社,2007,pp.267.
14 Wang Q,Kang S R,Wu L M,et al.Journal of Building Materials,2020,23(1),184(in Chinese).
王晴,康升荣,吴丽梅,等.建筑材料学报,2020,23(1),184.
15 Wang Q,Kang S R,Wu L M,et al.Materials Reports,2020,34(4),4056(in Chinese).
王晴,康升荣,吴丽梅,等.材料导报,2020,34(4),4056.
[1] 周志刚, 何斯华, 黎凯, 黄红明, 章泽鹏. 酸雨-干湿循环-荷载综合作用下水泥稳定碎石强度特性分析[J]. 材料导报, 2025, 39(3): 23070146-9.
[2] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[3] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[6] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[7] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[8] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[9] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[10] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[11] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[12] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[13] 王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
[14] 宋茂林, 张朝阳, 张尚枫, 侯晓伟, 石礼岗, 于斌, 罗宇维, 孔祥明. 超临界CO2环境下磷酸盐改性铝酸盐水泥性能变化[J]. 材料导报, 2024, 38(24): 23090114-4.
[15] 闵前燊, 辜涛, 何波, 魏仁杰, 刘川北, 张礼华, 刘来宝. 电石渣对CO2拌和水泥浆性能及固碳效能的影响[J]. 材料导报, 2024, 38(23): 23090082-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed