Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23090114-4    https://doi.org/10.11896/cldb.23090114
  无机非金属及其复合材料 |
超临界CO2环境下磷酸盐改性铝酸盐水泥性能变化
宋茂林1, 张朝阳2,*, 张尚枫2, 侯晓伟2, 石礼岗1, 于斌1, 罗宇维1, 孔祥明2
1 中海油田服务股份有限公司,河北 燕郊 065201
2 清华大学土木工程系,北京 100084
Change in Performance of Calcium Aluminate Phosphate Cement Under Supercritical CO2
SONG Maolin1, ZHANG Chaoyang2,*, ZHANG Shangfeng2, HOU Xiaowei2, SHI Ligang1, YU Bin1, LUO Yuwei1, KONG Xiangming2
1 China Oilfiled Services Limited, Yanjiao 065201, Hebei, China
2 School of Civil Engineering, Tsinghua University, Beijing 100084, China
下载:  全 文 ( PDF ) ( 1760KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 CO2地质封存是降低CO2排放量的关键技术,耐超临界CO2腐蚀的固井材料是保证CO2长期封存的前提。目前使用的油井水泥(OWC)由于碱性较高而无法保证CO2封存的长期有效性。磷酸盐改性铝酸盐水泥(CAPC)具有较强的抗碳化能力,但其在超临界CO2环境下的耐腐蚀性能还不清晰。本工作对比了超临界CO2环境下CAPC和OWC的性能变化。通过强度、渗透率及碳化深度测试表明,CAPC在90 d内抗压强度升高、渗透率无显著增加,且碳化深度不足0.05 mm。而OWC在腐蚀7 d后开始出现抗压强度降低、渗透率升高的现象,腐蚀90 d时OWC碳化深度达到1.10 mm,是CAPC碳化深度的20倍以上。研究结果表明,CAPC是理想的CO2封存井固井材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋茂林
张朝阳
张尚枫
侯晓伟
石礼岗
于斌
罗宇维
孔祥明
关键词:  磷酸盐改性铝酸盐水泥  油井水泥  超临界CO2  抗压强度  渗透率    
Abstract: The geological storage of CO2 is a key technology for reducing CO2 emissions, and the cementing material resistant to supercritical CO2 corrosion is a prerequisite for long-term CO2 storage. The oil well cement (OWC) currently used cannot guarantee the long-term effectiveness of CO2 storage due to its intrinsically high alkalinity. Calcium aluminate phosphate cement (CAPC) has strong carbonation resistance, but its corrosion resistance under supercritical CO2 is not clear. This work disclosed the changes in performance of CAPC and OWC under supercritical CO2. The results of compressive strength, permeability, and carbonization depth tests showed that the compressive strength of CAPC increased within 90 d, while the permeability did not significantly increase, and the carbonization depth was less than 0.05 mm. After 7 d of exposure to supercritical CO2, OWC began to experience a decrease in compressive strength and an increase in permeability. At 90 d of exposure, the carbonization depth of OWC reached 1.10 mm, which is more than 20 times that of CAPC. These findings indicate that CAPC is an ideal cementing material for CO2 storage wells.
Key words:  calcium aluminate phosphate cement    oil well cement    supercritical CO2    compressive strength    permeability
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TU528  
通讯作者:  * 张朝阳,清华大学土木工程系博士后。2016年7月、2022年1月于清华大学土木工程系土木工程专业分别获得工学学士学位和工学博士学位。目前主要从事水泥基材料外加剂、力学性能、耐久性等方面的研究工作。发表论文20余篇,包括Cement and Concrete Research、Cement and Concrete Composites、Construction and Building Materials、《硅酸盐学报》等。 2223838237@qq.com   
作者简介:  宋茂林,2007年7月、2010年7月于西南石油大学油气井工程专业分别获得工学学士学位和工学硕士学位。现为中海油田服务股份有限公司固井研究所所长,高级工程师。目前主要研究领域为油气井固井的研究与应用,发表论文和专利40余篇。
引用本文:    
宋茂林, 张朝阳, 张尚枫, 侯晓伟, 石礼岗, 于斌, 罗宇维, 孔祥明. 超临界CO2环境下磷酸盐改性铝酸盐水泥性能变化[J]. 材料导报, 2024, 38(24): 23090114-4.
SONG Maolin, ZHANG Chaoyang, ZHANG Shangfeng, HOU Xiaowei, SHI Ligang, YU Bin, LUO Yuwei, KONG Xiangming. Change in Performance of Calcium Aluminate Phosphate Cement Under Supercritical CO2. Materials Reports, 2024, 38(24): 23090114-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090114  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23090114
1 Chen J. Investigation of carbonation degradation of oil well cement for CCUS geological sequestration. Master’s Thesis, China University of Petroleum, 2020 (in Chinese).
陈杰. CCUS地质封存中CO2对油井水泥碳化腐蚀研究. 硕士学位论文, 中国石油大学, 2020.
2 Liu M X, Liang X, Lin Q G, et al. Proceedings of the CSEE, 2021, 41(14), 4731 (in Chinese).
刘牧心, 梁希, 林千果, 等.中国电机工程学报, 2021, 41(14), 4731.
3 IPCC. Summary for policymakers, Cambridge University Press, UK, 2018.
4 IPCC. Carbon dioxide capture and storage, Cambridge University Press, UK, 2005.
5 Hedenquest J W, Stewart M K. In: Geothermal resources council, international symposium energy. Hawaii, 1985.
6 Milestone N B, Kukacka L E, Carciello N. Geothermal Resources Council, Transactions, 1986, 10, 75.
7 Milestone N B, Sugama T, Kukacka L E, Carciello N. Cement and Concrete Research, 1986, 16, 941.
8 Milestone N B, Sugama T, Kukacka L E, Carciello N. Cement and Concrete Research, 1987, 17, 37.
9 Zhang B H, Zhang Q, Geng C X, et al. Guangzhou Chemical Industry, 2016, 44(7), 156 (in Chinese).
张丙华, 张倩, 耿春香, 等. 广州化工, 2016, 44(7), 156.
10 Liu S N, Zhang L W, Gan M G, et al. Proceedings of the CSEE, 2022, 42(9), 3126 (in Chinese).
刘思楠, 张力为, 甘满光, 等. 中国电机工程学报, 2022, 42(9), 3126.
11 Sugama T, Carciello N R. Journal of the American Ceramic Society, 1991, 74(5), 1023.
12 Sugama T. Cement and Concrete Research, 1996, 26, 1661.
13 Sugama T, Weber L, Brothers L E. Materials Letters, 2000, 44, 45.
14 Liu G Z, Hu G V, Shi X Z, et al. Journal of Petroleum Science and Engineering, 2021, 203, 108608.
15 Song J J, Xu M B, Zhou J, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(8), 2656 (in Chinese).
宋建建, 许明标, 周俊, 等. 硅酸盐通报, 2018, 37(8), 2656.
16 Zhang C, Wang L, Yao Y, et al. Materials Reports, 2023, 37(8), 21080026 (in Chinese).
张铖, 王玲, 姚燕, 等. 材料导报, 2023, 37(8), 21080026.
[1] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[2] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[3] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[4] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[5] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[6] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[7] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[8] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[9] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[10] 陈晓光, 赵文升, 吉祥龙, 王剑云. 透水混凝土的历史、现状与高性能化展望[J]. 材料导报, 2024, 38(24): 23100172-9.
[11] 闵前燊, 辜涛, 何波, 魏仁杰, 刘川北, 张礼华, 刘来宝. 电石渣对CO2拌和水泥浆性能及固碳效能的影响[J]. 材料导报, 2024, 38(23): 23090082-6.
[12] 韩瑞凯, 陈宇鑫, 张健, 李召峰, 王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响[J]. 材料导报, 2024, 38(22): 24060144-8.
[13] 杨张韬, 倪爱清, 王继辉, 冯雨薇. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 22110148-9.
[14] 范旭涵, 王炳楠, 汤世豪, 辛星, 裴妍. 磷酸镁水泥加固低液限粉土的pH和电导率响应与孔隙特征研究[J]. 材料导报, 2024, 38(16): 23080046-9.
[15] 陈永亮, 成亮, 陈铁军, 陈君宝, 张轶轲, 夏加庚. 砖混建筑垃圾制备蒸压加气混凝土性能及水化机理[J]. 材料导报, 2024, 38(12): 22060287-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed