Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23060124-6    https://doi.org/10.11896/cldb.23060124
  特种工程材料 |
有压与无压烧结雪无侧限抗压强度对比试验研究
霍海峰1,2, 杨雅静1, 孙涛3,*, 樊戎4, 蔡靖1, 胡彪1
1 中国民航大学交通科学与工程学院,天津 300300
2 交通部机场工程安全与长期性能科研基地,天津 300300
3 中国人民解放军陆军勤务学院,重庆 401331
4 中国人民解放军国防大学,北京 100091
Unconfined Compressive Strength Comparative Experimental Research of Sintered Snow with and Without Pressure
HUO Haifeng1,2, YANG Yajing1, SUN Tao3,*, FAN Rong4, CAI Jing1, HU Biao1
1 School of Transportation Science and Engineering, Civil Aviation University of China, Tianjin 300300, China
2 Ministry of Transport Airport Engineering Safety and Long Term Performance Research Base, Tianjin 300300, China
3 Army Logistics Academy of PLA, Chongqing 401331, China
4 China People's Liberation Army National Defence University, Beijing 100091, China
下载:  全 文 ( PDF ) ( 12862KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 雪层烧结是全球高纬度寒区雪跑道建造的重要环节,是指雪颗粒间胶结强度随时间不断增长的过程。为确定压实雪层烧结时间设计值,并深入对比有压烧结和无压烧结雪层烧结强度变化规律,自主研发加压设备进行无侧限抗压强度试验。研究表明,无侧限压缩应力-应变曲线呈现有峰值强度和无峰值强度两种形式,有峰值的情况更易发生在高压和长烧结时间下。有压烧结时雪颗粒不断受到挤压,促进雪融化成水,有利于冰的形成,故雪的密度随烧结时间延长先快后慢不断增长,而无压烧结时密度基本不发生变化,进而造成有压烧结雪样的强度和弹性模量均大于无压烧结雪样。无压烧结15 d后雪的强度增长显著放缓,故雪跑道建设过程中,在烧结温度为-10 ℃左右,建议取15 d作为压实雪层烧结时间设计值。研究成果可用来指导雪跑道建造中雪层强度指标和变形指标的确定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
霍海峰
杨雅静
孙涛
樊戎
蔡靖
胡彪
关键词:  高纬度寒区  压实雪层  烧结  抗压强度  弹性模量    
Abstract: Snow sintering is an important step in the construction of snow runways in high latitude cold regions around the world, which refers to the process of increasing strength of snow over time. In order to explore the strength change law of naturally deposited snow (sinter with pressure) and compacted snow layer (sinter without pressure), the sintered snow samples were studied by using self-developed pressurized equipment for unconfined compressive strength test. It was found that the unconfined compressive stress-strain curves presented both peak and no-peak strength forms, and the case with peak was more likely to occur under high pressure and long sintering time. The density of pressurized sintered snow samples grows with sintering time and shows the characteristics of fast and then slow, while the density of unpressurized sintering basically does not change. The strength and elastic modulus of pressurized sintered snow samples are greater than that of unpressurized sintering, and the growth rate of both are also greater than that of unpressurized. During the construction of snow runways, it is recommended to take 15 d as the design sintering time for compacted snow layers, and the unpressurized sintered snow strength slows down significantly after 15 d at sintering temperatures of around -10 ℃. The research results have excellent guidance for the determination of snow layer strength index and deformation index in the construction of snow runways.
Key words:  high latitude cold region    compacted snow layer    sinter    compressive strength    elastic modulus
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU5  
基金资助: 中央高校基金(3122020040);天津市交通运输委员会面上项目(2019-18)
通讯作者:  *孙涛,中国人民解放军陆军勤务学院副教授,发表论文35篇。2012年天津大学结构工程专业博士毕业后到中国人民解放军陆军勤务学院工作至今。目前主要从事工程抢修抢建、装配式建筑等方面的研究工作。 suntao_tju@126.com   
作者简介:  霍海峰,中国民航大学交通科学与工程学院副教授、硕士研究生导师,发表论文31篇。2012年天津大学岩土工程专业博士毕业后在中国民航大学工作至今。目前从事极地雪跑道、交通基础设施方面的研究。
引用本文:    
霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
HUO Haifeng, YANG Yajing, SUN Tao, FAN Rong, CAI Jing, HU Biao. Unconfined Compressive Strength Comparative Experimental Research of Sintered Snow with and Without Pressure. Materials Reports, 2024, 38(5): 23060124-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060124  或          http://www.mater-rep.com/CN/Y2024/V38/I5/23060124
1 Sommerfeld R A. Journal of Glaciology, 1971, 10(60), 357.
2 Fu X. Study on the thermal characteristics and mechanical properties of seasonal snow in Northeast China. Master's Thesis, Northeast Agricultural University, China, 2020 (in Chinese).
富翔. 东北地区季节性积雪热特性及力学性质研究. 硕士学位论文, 东北农业大学, 2020.
3 Mellor M, Smith J H. Strength studies of snow, US Army Materiel Command, Cold Regions Research & Engineering Laboratory Press, USA, 1966, pp. 3.
4 Abele G. Deformation of snow under rigid plates at a constant rate of penetration, Corps of Engineers, US Army Cold Regions Research & Engineering Laboratory, USA, 1970.
5 Abele G, Ramseier R O, Wuori A F. In: DA Task 1T062112A13001, Cold Regions Research-Applied Research and Engineering. Hanover, New Hampshire, 1968, pp. 5.
6 Capelli A, Reiweger I, Schweizer J. Frontiers in Physics, 2020, 8, 236.
7 Kinosita S. Physics of Snow and Ice: Proceedings, 1967, 1(2), 911.
8 Lintzén N, Edeskär T. Journal of Cold Regions Engineering, 2015, 29(4), 04014020.
9 Hong J L, Jiao F Q, Ying Y H, et al. Journal of Glaciology and Geocr-yology, 2022, 44(1), 251 (in Chinese).
洪嘉琳, 焦凤琪, 应咏翰, 等. 冰川冻土, 2022, 44(1), 251.
10 Hobbs P V, Mason B J. Philosophical Magazine, 1964, 9(98), 181.
11 Kuroiwa D. Tellus, 1961, 13(2), 252.
12 Dash J G, Fu H, Wettlaufer J S. Reports on Progress in Physics, 1995, 58(1), 115.
13 Colbeck S C. Journal of Geophysical Research: Oceans, 1983, 88(C9), 5475.
14 Kaempfer T U, Schneebeli M. Journal of Geophysical Research: Atmospheres, 2007, 112(D24), 1.
15 Gow A J, Ramseier R O. Journal of Glaciology, 1963, 4(35), 521.
16 Pomeroy J W, Brun E. Snow Ecology: An Interdisciplinary Examination of Snow-covered Ecosystems, 2001, 45, 118.
17 Hong J, Talalay P, Man T, et al. Journal of Glaciology, 2022, 68(272), 1.
18 Sun B, Tang X Y, Xiao E Z, et al. China Engineering Science, 2021, 23(2), 161 (in Chinese).
孙波, 唐学远, 肖恩照, 等. 中国工程科学, 2021, 23(2), 161.
19 White G, Mccallum A. International Journal of Pavement Research and Technology, 2020, 11(3), 311.
20 Cui X B, Liu J X, Tian Y X, et al. Marine Geodesy, 2019, 42(5), 422.
21 Gubler H. Journal of Glaciology, 1982, 28(100), 457.
22 Szabo D, Schneebeli M. Applied Physics Letters, 2007, 90(15), 151916.
23 Li T, Huo H F, Hu B, et al. Polar Research, DOI:10. 13679/j. jdyj. 20220436 (in Chinese).
李涛, 霍海峰, 胡彪, 等. 极地研究, DOI:10. 13679/j. jdyj. 20220436.
24 Schleef S, Löwe H. Journal of Glaciology, 2013, 59(214), 233.
25 Wang X, Baker I. Journal of Geophysical Research: Atmospheres, 2013, 118(22), 12.
26 Diemand D, Klokov V. In: Cold Regions Research and Engineering Laboratory. Hanover, New Hampshire, 2001, pp. 9.
27 Maeno N, Ebinuma T. The Journal of Physical Chemistry, 1983, 87(21), 4103.
28 Huo H F, Li T, Chen Q W, et al. Polar Research, DOI:10. 13679/j. jdyj. 20220423 (in Chinese).
霍海峰, 李涛, 陈庆炜, 等. 极地研究, DOI:10. 13679/j. jdyj. 20220423.
29 General Institute of Water Conservancy and Hydropower Planning and Design, Ministry of Water Resources, Nanjing Hydraulic Research Institute. GB/T 50123-2019, Standard for soil test method, Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration for Market Regulation, China, 2019(in Chinese).
水利部水利水电规划设计总院, 南京水利科学研究院. GB/T 50123-2019 土工试验方法标准, 中华人民共和国住房和城乡建设部, 国家市场监督管理总局, 2019.
[1] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[2] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[3] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[4] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[5] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[6] 叶登建, 代波. 放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能[J]. 材料导报, 2024, 38(4): 22070054-5.
[7] 李超, 周梅, 李杨, 张凯, 郭凌志. 固废粗集料平均弹性模量与混凝土弹性模量的相关性[J]. 材料导报, 2024, 38(4): 22050271-8.
[8] 万胤辰, 王匀, 李瑞涛, 徐磊, 于超, 顾宇佳. 无压烧结工艺对浆料直写式定向多孔铜组织及致密度的影响[J]. 材料导报, 2024, 38(3): 22040202-6.
[9] 杨瑞强, 汪永清, 常启兵, 周健儿. 烧结助剂MgO-Al2O3-SiO2-ZrO2提高管式支撑体的耐碱腐蚀性能研究[J]. 材料导报, 2023, 37(S1): 23040042-9.
[10] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[11] 李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
[12] 宋春鹏, 由爽, 纪洪广, 孙利辉. 相似材料抗压强度正交试验与材料强度影响系数研究[J]. 材料导报, 2023, 37(23): 22090218-6.
[13] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[14] 叶家元, 李国豪, 史迪, 任雪红, 吴春丽, 张洪滔, 张文生. 矿渣/偏高岭土复合前驱体原位转化沸石的影响因素研究[J]. 材料导报, 2023, 37(21): 22040092-8.
[15] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed