Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22050319-6    https://doi.org/10.11896/cldb.22050319
  无机非金属及其复合材料 |
基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究
魏令港, 黄靓*, 曾令宏
湖南大学土木工程学院,长沙 410082
Using Random Forest with Improved Variable Selection to Predict the Compressive Strength of Concrete with Lithium Slag
WEI Linggang, HUANG Liang*, ZENG Linghong
School of Civil Engineering, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 3401KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作提出了特征变量筛选结合特征变量相关性的方法,对构建的锂渣混凝土28 d抗压强度数据库进行优化,分别建立了随机森林模型和深度神经网络模型用于测试数据库,并以相关系数(R)、均方根误差(RMSE)和平均相对误差(MAE)三个指标对模型的预测结果进行对比分析。结果表明,预测锂渣混凝土的28 d抗压强度时,采取改进的特征变量筛选方法能够有效提高模型的预测效果,此外,特征变量筛选的前后随机森林(RF)模型的预测效果明显优于深度神经网络(DNN)模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏令港
黄靓
曾令宏
关键词:  随机森林(RF)  深度神经网络(DNN)  特征变量筛选  锂渣混凝土  抗压强度    
Abstract: This work proposed the method of feature variable screening combined with feature variable correlation to optimize the constructed 28-day compressive strength database of lithium-slag concrete, and established random forest model and deep neural network model for testing the database, respectively, and compared the prediction results of the models with three indicators: correlation coefficient (R), root mean square error (RMSE) and mean relative error (MAE). The results show that the improved feature variable screening method can effectively improve the prediction effect of the model when predicting the 28-day compressive strength of lithium-slag concrete, and in addition, the prediction effect of the before-and-after random forest (RF) model with feature variable screening is significantly better than that of the deep neural network (DNN) model.
Key words:  random forest (RF)    deep neural network (DNN)    variable selection    concrete with lithium slag    compressive strength
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TU528  
  TP312  
基金资助: 2021年产业技术基础公共服务平台-重点原材料行业碳达峰、碳中和公共服务平台项目(2021-H029-1-1)
通讯作者:  * 魏令港,湖南大学土木工程学院硕士研究生,主要从事固体废弃物资源化利用方向的研究。
黄靓,湖南大学土木工程学院教授(俄罗斯自然科学院外籍院士)、博士研究生导师。长期从事混凝土与砌体结构、固体废弃物资源化利用及建筑材料低碳技术的研究、教学和应用推广工作。主持国家重点研发计划课题1项、国家自然科学基金3项、省部级课题6项、长沙市科技计划8项,企业横向课题20余项。发表SCI/EI论文100余篇,获得国家发明专利10余项,为四本国家标准编委。huangliangstudy@126.com   
作者简介:  魏令港,湖南大学土木工程学院硕士研究生,主要从事固体废弃物资源化利用方向的研究。
引用本文:    
魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
WEI Linggang, HUANG Liang, ZENG Linghong. Using Random Forest with Improved Variable Selection to Predict the Compressive Strength of Concrete with Lithium Slag. Materials Reports, 2024, 38(9): 22050319-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050319  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22050319
1 Dai L X. Nonferrous Metals Engineering, 2007(4), 123 (in Chinese).
戴立新. 有色金属, 2007(4), 123.
2 Yang F. Study on properties and influencing factors of pervious concrete by solid waste materials. Master's Thesis, Southeast University, China, 2020 (in Chinese).
杨锋. 利用固废材料制备透水混凝土及其性能影响因素研究. 硕士学位论文, 东南大学, 2020.
3 Hu X. Prediction of high performance concrete strength based on artificial neural network. Master's Thesis, Hunan University, China, 2014 (in Chinese).
胡鑫. 基于人工神经网络的HPC强度预测. 硕士学位论文, 湖南大学, 2014.
4 Yang C C, Huang R. Cement and Concrete Research, 1996, 26(10), 1567.
5 Kang S, Lloyd Z, Kim T, et al. Cement and Concrete Research, 2020, 137, 106218.
6 Hu C X, Zhang Y S, Peng S. Journal of Chongqing University of Techno-logy(Natural Science), 2023, 37(9), 208(in Chinese).
胡昌秀, 张仰森, 彭爽. 重庆理工大学学报(自然科学), 2023, 37(9), 208.
7 Xiao Z H, Yu H, Wang Y C. Journal of Chongqing University of Techno-logy(Natural Science), 2018, 32(11), 134(in Chinese).
肖枝洪, 于浩, 王一超. 重庆理工大学学报(自然科学), 2018, 32(11), 134.
8 Li X Y, Ma C Y, Zhao X D. Journal of Functional Materials, 2020, 51(1), 1126(in Chinese).
李心源, 马春阳, 赵旭东. 功能材料, 2020, 51(1), 1126.
9 Dao D V, Ly H B, Vu H L T, et al. Materials, 2020, 13(5), 1072.
10 Gupta T, Patel K A, Siddique S, et al. Measurement, 2019, 147, 106870.
11 Huang W, Zhou L, Ge P, et al. Materials Reports, 2021, 35(15),15026 (in Chinese).
黄炜, 周烺, 葛培, 等. 材料导报, 2021, 35(15), 15026.
12 Azimi-Pour M, Eskandari-Naddaf H, Pakzad A. Construction and Buil-ding Materials, 2020, 230, 117021.
13 Abd A M, Abd S M. Case studies in Construction Materials, 2017, 6, 8.
14 Xu J C, Ren Q W, Shen Z Z. Annals of Nuclear Energy, 2015, 85, 296.
15 Han Q, Gui C, Xu J, et al. Construction and Building Materials, 2019, 226, 734.
16 Mohamed O A, Ati M, Najm O F. Key Engineering Materials, 2017, 744, 141.
17 Sun Y, Li G, Zhang J, et al. Advances in Civil Engineering, 2019, 2019,1.
18 Fernández-Delgado M, Cernadas E, Barro S, et al. The Journal of Machine Learning Research, 2014, 15(1), 3133.
19 Scornet E. Journal of Multivariate Analysis, 2016, 146, 72.
20 Zhang J, Ma G, Huang Y, et al.Construction and Building Materials, 2019, 210, 713.
21 Robin Genuer, Poggi Jean-Michel, Tuleau-Malot Christine. Pattern Re-cognition Letters, 2010, 31(14), 2225.
22 Bi L P. Experimental study on influence of lithium slag admixtures on durability of concrete. Master's Thesis, East China Jiaotong University, China, 2011 (in Chinese).
毕丽苹. 锂渣掺和料对混凝土耐久性影响的试验研究. 硕士学位论文, 华东交通大学, 2017.
23 Fan Y, Shi K B. China Rural Water and Hydropower, 2013(3), 119 (in Chinese).
范勇, 侍克斌. 中国农村水利水电, 2013(3), 119.
24 Hu Z Y. Study on concrete mixing lithium slag with other mineral admixtures. Master's Thesis, Chongqing University, China, 2008 (in Chinese).
胡志远. 锂渣复合渣混凝土研究. 硕士学位论文, 重庆大学, 2008.
25 Mao Y Z. Study on pozzolanic activity of lithium slag from lithium mica in Yichun and its effect on the performance of cement and concrete. Master's Thesis, Nanchang University, China, 2017 (in Chinese).
毛意中. 宜春锂云母提锂渣的火山灰活性及其对水泥混凝土性能的影响研究. 硕士学位论文, 南昌大学, 2017.
26 Wang C. Study on the effect of lithium slag on the adsorption of chloride ions in concrete. Master's Thesis, Xinjiang University, China, 2018 (in Chinese).
王晨. 锂渣对混凝土中氯离子吸附性作用的研究. 硕士学位论文, 新疆大学, 2018.
27 Wang G Q. Study on crack resistance of high performance concrete with lithium-slag. Master's Thesis, Xinjiang Agricultural University, China, 2011 (in Chinese).
王国强. 锂渣高性能混凝土收缩与抗裂性能研究. 硕士学位论文, 新疆农业大学, 2011.
28 Wen H. Research on preparation and concrete of lithium slag composite powder. Master's Thesis, Chongqing University, China, 2006 (in Chinese).
温和. 锂盐渣复合粉体制备与混凝土研究. 硕士学位论文, 重庆大学, 2006.
29 Wen Y, Liu G J, Qin Z Y, et al. Concrete, 2011(8), 76 (in Chinese).
温勇, 刘国君, 秦志勇,等. 混凝土, 2011(8), 76.
30 Xu K C, Bi L P, Chen M C. Concrete, 2017(1), 125 (in Chinese).
许开成, 毕丽苹, 陈梦成. 混凝土, 2017(1), 125.
31 Yang H Y. Experimental study on the strength and the cracking resistance at early ages of high-performance concrete added with lithium slag and fly ash. Master's Thesis, Xinjiang Agricultural University, China, 2012 (in Chinese).
杨恒阳. 复掺锂渣、粉煤灰高性能混凝土强度及早期抗裂性能试验研究. 硕士学位论文, 新疆农业大学, 2012.
32 Zhang L F, Chen J X, Li S W, et al. Construction Technology, 2005(8), 59 (in Chinese).
张兰芳, 陈剑雄, 李世伟,等.施工技术, 2005(8), 59.
33 Zhang S D. Forecasting of lithium-slag high performance concrete strength and ring method test on its early- age anti-crack capability. Master's Thesis, Xinjiang Agricultural University, China, 2011 (in Chinese).
张善德. 锂渣高性能混凝土强度预测及圆环法早期抗裂性试验研究. 硕士学位论文, 新疆农业大学, 2011.
34 Zhao Q S. Science and Technology of West China, 2014, 13(7), 36 (in Chinese).
赵强善. 中国西部科技, 2014, 13(7), 36.
35 Zhu Z K. Study on high strength high performance self compacting concrete containing lithium slag composite slag. Master's Thesis, Chongqing University, China, 2007 (in Chinese).
祝战奎. 锂渣复合渣高强高性能自密实混凝土研究. 硕士学位论文, 重庆大学, 2007.
36 Degenhardt F, Seifert S, Szymczak S. Briefings in Bioinformatics, 2019, 20(2), 492.
37 Hapfelmeier A, Ulm K. Computational Statistics & Data Analysis, 2013, 60, 50.
38 Le L M, Ly H B, Pham B T, et al. Materials, 2019, 12(10), 1670.
39 Dao D V, Trinh S H, Ly H B, et al. Applied Sciences, 2019, 9(6), 1113.
40 Breiman L. Machine Learning, 2001, 45(1), 5.
41 Shin H C, Roth H R, Gao M, et al. IEEE Transactions on Medical Imaging, 2016, 35(5), 1285.
42 Zhang J, Zheng Y, Qi D, et al. In: Proceedings of the 24th ACM SIGSPATIAL international conference on advances in geographic information systems. America, 2016, pp.1.
43 Sherstinsky A. Physica D: Nonlinear Phenomena, 2020, 404, 132306.
44 Deng L, Hinton G, Kingsbury B. In: 2013 IEEE international conference on acoustics, speech and signal processing. Canada, 2013, pp.8599.
45 Barron A R. IEEE Transactions on Information Theory, 1993, 39(3), 930.
46 Khorsheed M S, Al-Thubaity A O. Language Resources and Evaluation, 2013, 47(2), 513.
47 Leema N, Nehemiah H K, Kannan A. Applied Soft Computing, 2016, 49, 834.
48 Liu P, Wu X, Cheng H, et al. In: IOP Conference Series: Earth and Environmental Science. China, 2020, pp.012020.
49 Li B L, You N Q, Cao R L, et al. Materials Reports, 2020, 34(10), 10046 (in Chinese).
李保亮, 尤南乔, 曹瑞林,等. 材料导报, 2020, 34(10), 10046.
50 Liu Z, Deng P, Zhang Z.Construction and Building Materials, 2022, 356, 129142.
51 Wang X, Wang H, Wang Q. Materials Reports, 2022, 36(24), 63(in Chinese).
王雪, 王恒, 王强. 材料导报, 2022, 36(24), 63.
52 Wang Y R. Evaluation of pozzolanic activity of lithium slag and study on microstructure characteristics of composite cementitious materials. Ph.D. Thesis, China University of Mining & Technology (Beijing), China, 2018 (in Chinese).
王奕仁. 锂渣的火山灰活性评价及其复合胶凝材料微结构特性研究. 博士学位论文, 中国矿业大学(北京), 2018.
53 He Z, Li L, Du S.Construction and Building Materials, 2017, 147, 296.
54 He Z, Du S, Chen D.Journal of Hazardous Materials, 2018, 353, 35.
[1] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[2] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[3] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[4] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[5] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[6] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[7] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[8] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[9] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[10] 宋春鹏, 由爽, 纪洪广, 孙利辉. 相似材料抗压强度正交试验与材料强度影响系数研究[J]. 材料导报, 2023, 37(23): 22090218-6.
[11] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[12] 叶家元, 李国豪, 史迪, 任雪红, 吴春丽, 张洪滔, 张文生. 矿渣/偏高岭土复合前驱体原位转化沸石的影响因素研究[J]. 材料导报, 2023, 37(21): 22040092-8.
[13] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[14] 董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
[15] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed