Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21050176-6    https://doi.org/10.11896/cldb.21050176
  无机非金属及其复合材料 |
盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析
董伟1,*, 付前旺1, 申向东2, 薛慧君2, 王尧鸿3, 李志强4
1 内蒙古科技大学土木工程学院,内蒙古 包头 014010
2 内蒙古农业大学水利与土木建筑工程学院,呼和浩特 010018
3 内蒙古工业大学土木工程学院,呼和浩特 010051
4 石河子大学水利建筑工程学院,新疆 石河子 832003
Grey Entropy Analysis on Effect of Pore Structure on Compressive Strength of Aeolian Sand Concrete After Salt-freezing
DONG Wei1,*, FU Qianwang1, SHEN Xiangdong2, XUE Huijun2, WANG Yaohong3, LI Zhiqiang4
1 College of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
2 College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
3 College of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
4 College of Water and Architectural Engineering, Shihezi University, Shihezi 832003, Xinjiang, China
下载:  全 文 ( PDF ) ( 3290KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究盐冻环境下孔结构对风积沙混凝土抗压强度的影响,对不同风积沙掺量下的混凝土进行抗压强度和核磁共振孔结构试验。采用灰熵法分析孔结构特征参数对冻融循环后混凝土抗压强度的影响规律,在此基础上建立了不同冻融循环次数下孔结构参数和风积沙贡献率的复合型抗压强度模型。结果表明:混凝土的抗压强度和束缚流体饱和度随着冻融循环次数的增加逐渐降低,孔隙率和自由流体饱和度随着冻融循环次数的增加逐渐增大。30%以内风积沙掺入对混凝土的抗冻性能具有一定增强作用,20%的风积沙对混凝土抗盐冻后的抗压强度、孔隙率和束缚流体饱和度的抗损伤劣化提升效果最为明显。由灰熵分析可知,束缚流体饱和度和孔径小于10 μm的孔体积占比与抗压强度的关联度较高。本研究建立了混凝土抗压强度与束缚流体饱和度、孔径小于10 μm的孔体积占比和风积沙有效贡献率的抗压强度复合模型,模型拟合度较高。本研究可为风积沙混凝土在西北地区的推广提供理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董伟
付前旺
申向东
薛慧君
王尧鸿
李志强
关键词:  混凝土  抗压强度  孔隙  束缚流体饱和度  灰熵    
Abstract: To investigate the influence of pore structure on the compressive strength of aeolian sand concrete in salt-freezing environment, concrete samples with different aeolian sand content were tested for their the compressive strength and nuclear magnetic resonance pore structure. At the same time, the grey entropy method was used to analyze how freeze-thaw induced characteristic parameters of pore structure impact the compressive strength of concrete after freezing. Further, a composite compressive strength model under different freeze-thaw cycles was established with pore parameters and aeolian sand contribution rate as predictors. The results show that the increase of freeze-thaw cycles results in the decrease of the compressive strength and bound fluid saturation of concrete specimens and the increase of the porosity and free fluid saturation. When the content of aeolian sand is less than 30%, the frost resistance of concrete is enhanced, and when the aeolian sand content is 20%, the compressive strength, porosity and bound fluid saturation of concrete show the best damage resistance. The grey entropy analysis reveals that the saturation of the bound fluid and the proportion of pore volume with a pore diameter of less than 10 μm have a high correlation with the compressive strength. This research has established a well-fitted composite compressive strength model with predictors of bound fluid saturation, the proportion of pore volume with a diameter of less than 10 μm, and the effective contribution rate of aeolian sand. It will provide a theoretical basis for the promotion of aeolian sand concrete in the northwest region.
Key words:  concrete    compressive strength    pore    bound fluid saturation    grey entropy
发布日期:  2023-02-08
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52268044);内蒙古自治区自然科学基金(2020BS05008;2021LHMS05019);内蒙古科技大学创新基金(2019QDL-B48)
通讯作者:  *董伟,副教授,硕士研究生导师。2011年6月毕业于内蒙古农业大学,获学士学位,2016年7月毕业于内蒙古农业大学,获博士学位(硕博连读)。同年进入内蒙古科技大学土木工程学院工作至今。主要从事绿色建筑材料、混凝土耐久性方面的研究,在国内外学术期刊发表文章20多篇。   
引用本文:    
董伟, 付前旺, 申向东, 薛慧君, 王尧鸿, 李志强. 盐冻作用后风积沙混凝土孔结构对抗压强度影响的灰熵分析[J]. 材料导报, 2023, 37(2): 21050176-6.
DONG Wei, FU Qianwang, SHEN Xiangdong, XUE Huijun, WANG Yaohong, LI Zhiqiang. Grey Entropy Analysis on Effect of Pore Structure on Compressive Strength of Aeolian Sand Concrete After Salt-freezing. Materials Reports, 2023, 37(2): 21050176-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050176  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21050176
1 Elipe M G M, López-querol S. Construction and Building Materials, 2014, 73(30), 728.
2 Dong W, Shen X D, Xue H J, et al. Construction and Building Materials, 2016, 123, 792.
3 Dong Wei, Xiao Yang, Su Ying, et al. Advanced Engineering Sciences, 2020, 52(3), 86(in Chinese).
董伟, 肖阳, 苏英, 等. 工程科学与技术, 2020, 52(3), 86.
4 Li Y G, Zhang H Z, Liu G X, et al. Construction and Building Materials, 2020, 247, 118538.
5 Li Y G, Zhang H Z, Liu G X, et al. Advances in Civil Engineering, 2019, 3, 1.
6 Li Yugen, Zhang Huimei, Liu Guangxiu, et al. Journal of Building Materials, 2020, 23(5), 1212(in Chinese).
李玉根, 张慧梅, 刘光秀, 等. 建筑材料学报, 2020, 23(5), 1212.
7 Lyu Shuai. Experimental study on mechanical properties and microstructure of aeolian sand-fly ash concrete. Master's Thesis, Inner Mongolia University of Science and Technology, China, 2018(in Chinese).
吕帅. 风积沙-粉煤灰混凝土力学性能及微观结构试验研究. 硕士学位论文, 内蒙古科技大学, 2018.
8 Su Ying. Research on durability of aeolian sand concrete in salt-freezing environment. Master's Thesis, Inner Mongolia University of Science and Technology, China, 2019(in Chinese).
苏英. 盐冻环境下风积沙混凝土耐久性研究. 硕士学位论文, 内蒙古科技大学, 2019.
9 Xue H J, Shen X D, Liu Q, et al. Journal of Advanced Concrete Technology, 2017, 15(12), 724.
10 Xue Huijun, Shen Xiangdong, Zou Chunxia, et al. Journal of Building Materials, 2019, 22(2), 199(in Chinese).
薛慧君, 申向东, 邹春霞, 等. 建筑材料学报, 2019, 22(2), 199.
11 Shen Xiangdong, Zou Yuxiao, Xue Huijun, et al. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2), 161(in Chinese).
申向东, 邹欲晓, 薛慧君, 等. 农业工程学报, 2019, 35(2), 161.
12 Zou Y X, Shen X D, Zuo X B, et al. European Journal of Environmental and Civil Engineering, 2020, 26(4), 1267.
13 Wu Junchen. Durability research and service life prediction of aeolian sand concrete under complex environment. Ph. D. Thesis, Inner Mongolia Agricultural University, 2018(in Chinese).
吴俊臣. 复杂环境下风积沙混凝土的耐久性能研究与寿命预测. 博士学位论文, 内蒙古农业大学, 2018.
14 Wang X X, Liu C, Liu S G, et al. Construction and Building Materials, 2020, 247, 118431.
15 Bu J, Tian Z. Sādhanā, 2016, 41(3), 1.
16 Yuan, J, Wu Y, Zhang J K. Construction and Building Materials, 2018, 168, 975.
17 Jin S S, Zhang J X, Han S. Construction and Building Materials, 2017, 135, 1.
18 Liu Qian, Shen Xiangdong, Dong Ruixin, et al. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10), 108(in Chinese).
刘倩, 申向东, 董瑞鑫, 等. 农业工程学报, 2019, 35(10), 108.
19 Liu Q, Shen X D, Wei L S, et al. JOM, 2019, 72, 1.
20 Zhao Yanru, Liu Fangfang, Wang Lei, et al. Materials Reports B:Research Papers, 2020, 34(6), 12064(in Chinese).
赵燕茹, 刘芳芳, 王磊, 等. 材料导报:研究篇, 2020, 34(6), 12064.
21 Zhao Yanru, Wang Zhihui, Wang Lei, et al. Journal of Building Materials, 2019, 22(1), 45(in Chinese).
赵燕茹, 王志慧, 王磊, 等. 建筑材料学报, 2019, 22(1), 45.
22 Shen A Q, Lin S L, Guo Y C, et al. Construction and Building Materials, 2018, 174, 684.
23 Xue Cuizhen, Shen Aiqin, Qiao Hongxia. Journal of South China University of Technology(Natural Science Edition), 2020, 48(3), 136(in Chinese).
薛翠真, 申爱琴, 乔宏霞. 华南理工大学学报(自然科学版), 2020, 48(3), 136.
24 Sheng B Z, Jun L L, Wei A X, et al. Advances in Materials Science and Engineering, 2017, 2017, 1.
[1] 张苑竹, 杨佳铭, 魏纲, 黄森乐. 基于扩散-对流模型的海底混凝土隧道耐久寿命预测[J]. 材料导报, 2023, 37(6): 21060165-5.
[2] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[3] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[4] 李嘉, 秦时髦, 张恒龙. 基于STC-SMA层间性能的沥青混合料设计与评估[J]. 材料导报, 2023, 37(5): 21080246-8.
[5] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[6] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[7] 徐潇航, 胡张莉, 刘加平, 李文伟, 刘建忠. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 22010068-9.
[8] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[9] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[10] 谭益成, 刘志超, 王发洲. -10 ℃条件下掺氯化镁溶液的γ-C2S碳化性能研究[J]. 材料导报, 2023, 37(1): 22010270-7.
[11] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[12] 高瑞晓, 王剑云. 微生物矿化沉积碳酸钙技术修复混凝土既有微裂缝研究进展[J]. 材料导报, 2023, 37(1): 21120210-10.
[13] 商怀帅, 柴鑫. 往复荷载下锈蚀钢筋与混凝土粘结性能的试验研究[J]. 材料导报, 2023, 37(1): 21030106-6.
[14] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[15] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed