Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21060165-5    https://doi.org/10.11896/cldb.21060165
  无机非金属及其复合材料 |
基于扩散-对流模型的海底混凝土隧道耐久寿命预测
张苑竹1, 杨佳铭1, 魏纲1,*, 黄森乐2
1 浙大城市学院工程学院,杭州 310015
2 浙江工业大学土木工程学院,杭州 310023
Durability Life Prediction of Concrete Submarine Tunnel Based on the Model of Diffusion-Convection
ZHANG Yuanzhu1, YANG Jiaming1, WEI Gang1,*, HUANG Senle2
1 School of Engineering, Zhejiang University City College, Hangzhou 310015, China
2 College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
下载:  全 文 ( PDF ) ( 3605KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 考虑海底隧道承受侵蚀性高压力海水的服役环境特点以及高性能混凝土的非饱和特性,建立了海底混凝土隧道氯离子扩散-对流传输模型和耐久寿命预测模型。以舟山沈家门海底隧道为工程背景,通过室内实验确定计算参数,采用TOUGH2软件数值模拟了环境中氯离子侵入隧道的传输过程,得到了氯离子经时传输规律,以及水头、混凝土初始饱和度、环境氯离子质量分数的作用规律,比较了扩散、饱和扩散-对流、非饱和扩散-对流预测模型的计算差异。结果表明:海底隧道腋角位置的氯离子质量分数累积最高;水头和环境氯离子质量分数与氯离子质量分数增长呈正相关,混凝土初始饱和度与氯离子质量分数增长呈负相关;按照扩散模型预测得到的隧道耐久寿命最长,按照非饱和扩散-对流模型预测得到的耐久寿命最短。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张苑竹
杨佳铭
魏纲
黄森乐
关键词:  海底隧道  非饱和混凝土  扩散-对流  氯离子  耐久寿命    
Abstract: Considering the service environment characteristics of submarine tunnel subjected to aggressive high pressure seawater and the unsaturated characteristics of high performance concrete, the chloride ion diffusion-convection transport model and the durability life prediction model of submarine concrete tunnel were established. Using Shenjiamen submarine tunnel in Zhoushan as the engineering background, the calculation parameters were determined through indoor experiments, and the process of environmental chloride ions intruding into the tunnel was numerically simulated by TOUGH2 software, which obtained the time-dependent law of chloride ion transmission, as well as the action law of water head, initial saturation of concrete, and mass fraction of ambient chloride ions. Then the differences between diffusion, saturated diffusion-convection, and unsaturated diffusion-convection prediction models were compared. The results show that the accumulation of chloride ion mass fraction is the highest in the axillary position of the tunnel; the head and ambient chloride ion mass fraction are positively correlated with the growth of chloride ion mass fraction, and the initial saturation of concrete is negatively correlated with the growth of chloride ion mass fraction; the durability life of the tunnel is the longest according to the diffusion model and the shortest according to the unsaturated diffusion-convection model.
Key words:  submarine tunnel    unsaturated concrete    diffusion-convection    chloride ion    durability life
发布日期:  2023-03-27
ZTFLH:  U459.5  
基金资助: 国家自然科学基金(51878609);浙江省自然科学基金(LY21E080005)
通讯作者:  *魏纲,浙大城市学院土木工程系教授、博士研究生导师。2003年毕业于浙江大学,取得岩土工程专业硕士学位,2006年毕业于浙江大学,取得岩土工程博士学位。主要从事城市地下隧道与周围环境的相互作用和风险评估与控制研究。主持国家自然科学基金面上项目3项、省级重点项目1项、省级一般项目3项。发表论文330余篇,出版专著3本。weig@zucc.edu.cn.   
作者简介:  张苑竹,浙大城市学院土木工程系教授、硕士研究生导师。2000年毕业于西安理工大学,取得结构工程硕士学位,2003年毕业于浙江大学,取得结构工程博士学位。主要从事混凝土耐久性研究。主持国家自然科学基金项目2项、 浙江省自然科学基金项目3项。发表论文30余篇。
引用本文:    
张苑竹, 杨佳铭, 魏纲, 黄森乐. 基于扩散-对流模型的海底混凝土隧道耐久寿命预测[J]. 材料导报, 2023, 37(6): 21060165-5.
ZHANG Yuanzhu, YANG Jiaming, WEI Gang, HUANG Senle. Durability Life Prediction of Concrete Submarine Tunnel Based on the Model of Diffusion-Convection. Materials Reports, 2023, 37(6): 21060165-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060165  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21060165
1 Zhao T J, Jiang F X. Durability technology of subsea tunnel engineering, China Communications Press, China, 2010(in Chinese).
赵铁军, 姜福香. 海底隧道工程耐久性技术, 人民交通出版社, 2010.
2 Qu L Q, Jin Z Q, Zhao T J, et al. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(11), 2333 (in Chinese).
曲立清, 金祖权, 赵铁军, 等. 岩石力学与工程学报, 2007, 26(11), 2333.
3 Jin Z Q, Zhao T J, Hou B R, et al. Journal of Civil, Architectural & Environmental Engineering, 2009, 31(6), 86 (in Chinese).
金祖权, 赵铁军, 侯保荣, 等. 土木建筑与环境工程, 2009, 31(6), 86.
4 Wang Y D, Tang Y J, Chen C, et al. Structural Engineers, 2012, 28(4), 57(in Chinese).
王永东, 汤永净, 陈聪, 等. 结构工程师, 2012, 28(4), 57.
5 Lei M F, Peng L M, Shi C H. Tunnelling and Underground Space Technology, 2014, 42, 15.
6 Song H W, Pack S W. Construction and Building Materials, 2009, 23(10), 3270.
7 Sun J. Journal of Rock Mechanics and Geotechnical Engineering, 2011, 3(4), 289.
8 Wang S N, Li K F, Fan Z H, et al. Port & Waterway Engineering, 2015(3), 78 (in Chinese).
王胜年, 李克非, 范志宏, 等. 水运工程, 2015(3), 78.
9 Gao W, Chen X, Chen D L. Journal of Advanced Research, 2019, 20, 141.
10 Chen C. Research on durability of underground concrete structure in chloride environment. Ph. D. Thesis, Tongji University, China, 2009(in Chinese).
陈聪. 氯离子环境下地下混凝土结构耐久性的研究. 博士学位论文, 同济大学, 2009.
11 Li X Z, Zhang Y Z. Bulletin of the Chinese Ceramic Society, 2014, 33(8), 6(in Chinese).
李晓珍, 张苑竹. 硅酸盐通报, 2014, 33(8), 6.
12 Liu S J, He C, Sun Q, et al. China Journal of Highway and Transport, 2017, 20(8), 125(in Chinese).
刘四进, 何川, 孙齐, 等. 中国公路学报, 2017, 20(8), 125.
13 Ogata A, BanksR B.A solution of the differential equation of longitudinal dispersion in porous media, United States Government Printing Office, 1961.
14 Nilsson L O. Materials & Structures, 1997, 30(9), 533.
15 Edvardsen C K. In: First International Symposium Proceeding Safe & Reliable Tunnels Innovative European Achievements. Prague, 2004, pp. 177.
16 Jin W L, Zhang Y, Lu Z Y. Bulletin of the Chinese Ceramic Society, 2008, 36(10), 1362 (in Chinese).
金伟良, 张奕, 卢振勇. 硅酸盐学报, 2008, 36(10), 1362.
17 Li C Q, Li K F. Bulletin of the Chinese Ceramic Society, 2010, 38(4), 581(in Chinese).
李春秋, 李克非. 硅酸盐学报, 2010, 38(4), 581.
18 Bao J W, Wang L C. The Ocean Engineering, 2014, 30(1), 68(in Chinese).
鲍玖文, 王立成. 海洋工程, 2014, 30(1), 68.
19 Atakinson A. Journal of Materials Science, 1984, 19(9), 3068.
20 Millington R J, Quirk J P. Transactions of the Faraday Society, 1961, 57, 1200.
21 Van Genuchten M T. Soil Science Society of America Journal, 1980, 44(5), 892.
22 Ministry of Construction of the People's Republic of China. Code for investigation of geotechnical engineering: GB/T 50021-2019, China Architecture & Building Press, China, 2019(in Chinese).
中华人民共和国建设部. 岩土工程勘察规范: GB/T 50021-2019, 中国建筑工业出版社, 2019.
23 Ministry of Construction of the People's Republic of China. Standard for test method of mechanical properties on ordinary concrete: GB/T 50081-2002, China Architecture & Building Press, China, 2009(in Chinese).
中华人民共和国建设部. 普通混凝土力学性能试验方法标准: GB/T 50081-2002, 中国建筑工业出版社, 2009.
24 American Concrete Institute. Standard test method for density, absorption, and voids in hardened concrete, ASTM C642. United States, 2002.
25 Ministry of Water Resources of the People's Republic of China. Hydraulic concrete test procedure: SL/T 352-2020, China Water & Power Press, China, 2021(in Chinese).
中华人民共和国水利部. 水工混凝土试验规程: SL/T 352-2020, 中国水利水电出版社, 2021.
26 Ministry of Construction of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082-2009, China Architecture & Building Press, China, 2010(in Chinese).
中华人民共和国建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082-2009, 中国建筑工业出版社, 2010.
27 Zhang Y Z, Li X Z, Wei X J, et al. Journal of the Chinese Ceramic Society, 2015, 43(4), 368(in Chinese).
张苑竹, 李晓珍, 魏新江, 等. 硅酸盐学报, 2015, 43(4), 368.
28 Ministry of Construction of the People's Republic of China. Technical code for waterproofing of under-ground works: GB 50108-2008, China Planning Press, China, 2009(in Chinese).
中华人民共和国建设部. 地下工程防水技术规程:GB 50108-2008, 中国计划出版社, 2009.
29 Lu X Y, Li C L, Zhang H X. Cement and Concrete Research, 2002, 32(2), 323.
30 DuraCrete. General guidelines for durability design and redesign, [Gouda]:[CUR], the European Union-Brite EuRam III, 2000.
[1] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[2] 周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
[3] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[4] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[5] 吴贤国, 王雷, 陈虹宇, 冯宗宝, 覃亚伟, 徐文胜. 基于随机森林-NSGAⅡ高性能混凝土耐久性配合比的多目标优化研究[J]. 材料导报, 2022, 36(17): 20110015-7.
[6] 朱红光, 侯金良, 石晶, 葛洁雅, 吕威, 杨森, 李宗徽, 沈正艳. 碱激发材料修补普通混凝土的黏结面性能研究[J]. 材料导报, 2022, 36(16): 21030218-5.
[7] 罗素蓉, 贾旭秀, 王德辉. 碳铝酸盐对水泥-石灰石粉-矿粉胶凝体系抗氯离子渗透性能的影响[J]. 材料导报, 2022, 36(11): 21040039-6.
[8] 潘诗婷, 李凯, 张超慧, 史才军. 粗骨料形状对混凝土氯离子扩散性能影响的数值模拟研究[J]. 材料导报, 2022, 36(10): 21030145-9.
[9] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土的电阻率模型[J]. 材料导报, 2022, 36(1): 20100189-6.
[10] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[11] 唐占荣, 杨耀国, 叶海龙, 康海平. 高盐碱土壤对混凝土电杆腐蚀的影响分析[J]. 材料导报, 2021, 35(z2): 224-227.
[12] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[13] 郭丽萍, 费香鹏, 曹园章, 薛晓丽, 丁聪. 氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J]. 材料导报, 2021, 35(8): 8034-8041.
[14] 鲍玖文, 庄智杰, 张鹏, 魏佳楠, 高嵩, 赵铁军. 基于相似性的海洋潮汐区环境混凝土抗氯盐侵蚀性能研究进展[J]. 材料导报, 2021, 35(7): 7087-7095.
[15] 鞠学莉, 吴林键, 刘明维, 张洪, 李婷婷. 考虑氯离子侵蚀维度的钢筋混凝土码头服役寿命预测[J]. 材料导报, 2021, 35(24): 24075-24080.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed