Please wait a minute...
材料导报  2022, Vol. 36 Issue (10): 21030145-9    https://doi.org/10.11896/cldb.21030145
  无机非金属及其复合材料 |
粗骨料形状对混凝土氯离子扩散性能影响的数值模拟研究
潘诗婷, 李凯, 张超慧, 史才军*
湖南大学土木工程学院,绿色先进土木工程材料及应用技术湖南省重点实验室, 长沙 410082
Influence of Coarse Aggregate Shape on Chloride Diffusivity in Concrete by Numerical Modelling
PAN Shiting, LI Kai, ZHANG Chaohui, SHI Caijun*
Key Laboratory for Green and Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 15990KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土中骨料(如卵石和碎石)多为不规则形状,这会显著影响氯离子在材料内部的传输过程。因此对骨料形状进行有效表征并研究其对混凝土氯离子扩散性能的影响具有重要意义。采用计算机模拟技术,本工作基于所提出的卵石和碎石骨料建模方法,以真实骨料的粒径分布为输入参数,构建出混凝土的介观尺度模型,模拟了氯离子在混凝土中的传输过程,揭示了粗骨料体积分数、形状和界面过渡区与氯离子扩散系数的量化关系。研究表明:粗骨料体积分数和不规则程度的增大均会减小混凝土表观氯离子扩散系数,而界面过渡区对混凝土氯离子扩散系数有增大作用,骨料尺寸对混凝土中界面过渡区的氯离子扩散有一定影响,考虑骨料尺寸影响的情况验证了试验混凝土的界面过渡区厚度为30~50 μm。本工作计算得到的混凝土氯离子扩散系数与实验结果吻合较好,证实了所提出模拟方法的有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
潘诗婷
李凯
张超慧
史才军
关键词:  氯离子扩散  粗骨料  不规则形状  数值模拟    
Abstract: Aggregates (such as pebbles and crushed stones) are irregular in practice, which significantly affects the diffusion of chloride ions in concrete. It is important to characterize the aggregate shape and study its influence on the chloride ion diffusion of concrete. By using computer simulation technology, a method is proposed to construct the numerical model of pebble and crushed stone. Taking real aggregate size distribution as input parameters, the structural characteristics of concrete at meso-scale are successfully represented so that the diffusion process of chloride ions in concrete and the quantitative relationship among aggregate volume fraction, shape, interface transition zone and chloride ion diffusion coefficient can be determined. It is found that the apparent chloride ion diffusion coefficient of concrete decreases with the coarse aggregates fraction and the degree of irregularity increasing, while the interfacial transition zone enhances the chloride diffusion ability. The size of aggregate has a certain effect on the diffusion of chloride ions in the interfacial transition zone of concrete. Considering the effect of aggregate size, it is verified that the thickness of the interfacial transition zone of the test concrete is between 30 μm and 50 μm. The calculated chloride diffusion coefficients are in good agreement with the experimental results, which validates the proposed simulation method.
Key words:  chloride ion diffusion    coarse aggregate    irregular shape    numerical simulation
发布日期:  2022-05-24
ZTFLH:  TU528  
基金资助: 国家重点研发计划项目(2018YFC0705400)
通讯作者:  cshi@hnu.edu.cn   
作者简介:  潘诗婷,2018年6月毕业于南昌大学,获得工学学士学位。现为湖南大学土木工程学院硕士研究生,在史才军教授的指导下进行研究。目前主要研究领域为混凝土中氯离子传输性能。
史才军,1984年6月毕业于东南大学,获得工学学士学位,1987年2月毕业于东南大学,获得工学硕士学位,1989年12月毕业于南京化工大学,获得工学博士学位,1992年12月毕业于加拿大卡尔加里大学,获得工学博士学位。国家特聘专家、湖南省特聘专家、亚洲混凝土联合会副主席,湖南大学985工程创新平台首席科学家、特聘教授、博士研究生导师,Taylor and Francis学术期刊 Journal of Sustainable Cement-based Materials创刊主编,Journal of Ceramics in Modern Technologies共同主编、中国硅酸盐学会会刊《硅酸盐学报》副主编,Elsevier著名学术期刊Cement and Concrete Research和Cement and Concrete Composites、Construction and Building Materials、Taylor & Francis学术期刊Journal of Structural Integrity and Maintenance、西班牙Materiales de Construccion、《材料导报》《建筑材料学报》《重庆交通大学学报》《中国水泥》等期刊编委。在水泥和混凝土材料的设计、测试、耐久性、智能防渗漏材料及废物的利用和处置方面做了广泛深入的研究工作,发表高水平学术论文300余篇。出版英文著作7部,中文著作3部,合编国际会议英文论文集6本。2015—2017年“建设与建造”领域中国高被引学者,2016年全球土木工程领域高被引学者,2001、2007和2016年分别当选为国际能源研究会、美国混凝土学会及国际材料与结构联合会的会士。
引用本文:    
潘诗婷, 李凯, 张超慧, 史才军. 粗骨料形状对混凝土氯离子扩散性能影响的数值模拟研究[J]. 材料导报, 2022, 36(10): 21030145-9.
PAN Shiting, LI Kai, ZHANG Chaohui, SHI Caijun. Influence of Coarse Aggregate Shape on Chloride Diffusivity in Concrete by Numerical Modelling. Materials Reports, 2022, 36(10): 21030145-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030145  或          http://www.mater-rep.com/CN/Y2022/V36/I10/21030145
1 Delagrave A, Bigas J, Ollivier J, et al. Advanced Cement Based Mate-rials, 1997, 5(3-4), 86.
2 Care S. Cement and Concrete Research, 2003, 33(7), 1021.
3 Yang C, Su J. Cement and Concrete Research, 2002, 32(10), 1559.
4 Wang Y, Wu L, Wang Y, et al. Construction and Building Materials, 2018, 185, 230.
5 Garboczi E, Schwartz L, Bentz D. Advanced Cement Based Materials, 1995, 2(5), 169.
6 Care S, Herve E. Transport in Porous Media, 2004, 56(2), 119.
7 Zheng J, Zhou Z. Materials and Structures, 2007, 40(7), 693.
8 Zheng J, Zhou X, Wu Y, et al. Construction and Building Materials, 2012, 31(6), 151.
9 Du X, Jin L, Ma G. Finite Elements in Analysis and Design, 2014, 85, 87.
10 Pan Z, Chen A, Ruan X. Engineering Structures, 2015, 95, 154.
11 Xu J, Li F. Construction and Building Materials, 2017, 130, 11.
12 Jie W, Dassekpo J, Wan C, et al. Results in Physics, 2017, 7, 1427.
13 Liu Q, Feng G, Xia J, et al. Composite Structures, 2018, 183, 371.
14 Liu Q F. Journal of the Chinese Ceramic Society, 2018, 46(8), 1074(in Chinese).
刘清风. 硅酸盐学报, 2018, 46(8), 1074.
15 Zheng J, Zhang J, Zhou X, et al. Construction and Building Materials, 2018, 171, 977.
16 Xiong Q, Wang X, Jivkov A P. Cement and Concrete Composites, 2020, 109, 103545.
17 Chen W K, Liu Q F. Journal of Hydraulic Engineering, 2021(52), 6 (in Chinese).
陈伟康, 刘清风. 水利学报, 2021(52), 6.
18 Mao L, Hu Z, Xia J, et al. Composite Structures, 2019, 207, 176.
19 Zhang C, Chen W, Mu S, et al. Construction and Building Materials, 2021, 285, 122806.
20 Wu Y, Zhi P. Construction and Building Materials, 2020, 245, 118352.
21 Tian Y, Chen Y, Jin N, et al. Construction and Building Materials, 2019, 221, 443.
22 Jiang H, Tian Y, Jin N, et al. Construction and Building Materials, 2020, 259, 119694.
23 Benkemoun N, Hammood M. Finite Elements in Analysis and Design, 2017, 130, 12.
24 Naderi S, Tu W, Zhang M. Cement and Concrete Research, 2021, 140, 106317.
25 Zhang C, Liu P, Li K, et al. Cement and Concrete Composites, 2020, 114, 103714.
26 JGJ 25-2006 普通混凝土用砂、石质量及检验方法标准. 中国建筑工业出版社, 2007.
27 He J, Lei D, Xu W. Cement and Concrete Composites, 2020, 114, 103779.
28 Collepardi M, Marcialis A, Turriziani R. Ⅱ Cemento, 1970, 67(4), 157.
29 Mangat P S, Molloy B T. Materials and Structure, 1994, 27, 338.
30 Chen H, Zhu Z, Lin J, et al. Journal of Sustainable Cement-Based Mate-rials, 2018, 7(4), 248.
31 Qiu C. Quantitative characterization and elastic properties of ITZ of concrete. Master's Thesis, Eastsouth University,China,2012 (in Chinese).
邱晨. 混凝土界面过渡区定量表征及弹性性能. 硕士学位论文,东南大学,2012.
[1] 王兆, 张新虎, 王召浩, 王冠, 惠永博, 郑伟, 丁阳, 朱丽兵, 邓勇军, 傅先刚, 恽迪, 柳文波. 基于MOOSE平台的UO2燃料性能分析[J]. 材料导报, 2022, 36(7): 21040019-7.
[2] 徐洲, 李晓延, 王小鹏, 王海东. 组合热源模型在焊接模拟中的应用现状与展望[J]. 材料导报, 2022, 36(6): 20070081-6.
[3] 杨利香, 宋兴福, 陆美荣, 夏月辉. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报, 2022, 36(4): 21020037-7.
[4] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[5] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[6] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[7] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[8] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[9] 汪海波, 于海群, 童水光, 唐宁, 徐永亮. 引晶直径对扩肩形态影响的数值模拟及实验研究[J]. 材料导报, 2021, 35(Z1): 186-188.
[10] 莫东鸣. 高Prandtl数双层流体的热毛细对流数值模拟[J]. 材料导报, 2021, 35(Z1): 302-305.
[11] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[12] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[13] 陈克选, 王向余, 李宜炤, 陈彦强, 杜茵茵. 水冷条件下WAAM温度场的数值模拟研究[J]. 材料导报, 2021, 35(4): 4165-4169.
[14] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[15] 陈旭勇, 程子扬, 詹旭, 吴巧云. 纳米SiO2-橡胶粉再生混凝土力学性能试验研究及数值模拟[J]. 材料导报, 2021, 35(23): 23235-23240.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed