Please wait a minute...
材料导报  2021, Vol. 35 Issue (23): 23235-23240    https://doi.org/10.11896/cldb.20090209
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
纳米SiO2-橡胶粉再生混凝土力学性能试验研究及数值模拟
陈旭勇, 程子扬, 詹旭, 吴巧云
武汉工程大学土木工程与建筑学院,武汉 430073
Experimental and Numerical Research on Mechanical Properties of Recycled Concrete with Nano-SiO2-Rubber Powder
CHEN Xuyong, CHENG Ziyang, ZHAN Xu, WU Qiaoyun
School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430073, China
下载:  全 文 ( PDF ) ( 5653KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以质量取代法研究纳米SiO2(取代水泥)和橡胶粉(取代河砂)对再生混凝土28 d抗压强度、抗折强度和劈裂抗拉强度的影响,并通过MATLAB软件建立了二维随机骨料投放程序,采用ABAQUS软件对再生混凝土单轴受压力学性能进行了数值模拟分析。结果表明:单掺橡胶粉时,随着橡胶粉掺量增加,再生混凝土的抗压强度、劈裂抗拉强度和抗折强度呈先增大后减小的趋势;当橡胶粉掺量恒定时,再生混凝土抗压、劈裂抗拉和抗折强度随着纳米SiO2掺量增加而增大。与未掺SiO2组相比,纳米SiO2掺量为1.5%(质量分数,下同)的再生混凝土28 d抗压强度、劈裂抗拉强度和抗折强度分别提高了13.3%、22.8%、21%。基准组(纳米SiO2和橡胶掺量为0)和试验组(1.5%纳米SiO2和5%橡胶)单轴受压试验模拟结果与真实试验结果的误差较小,表明数值模拟分析所得的计算值与试验值吻合良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈旭勇
程子扬
詹旭
吴巧云
关键词:  再生混凝土  橡胶粉  纳米SiO2  力学性能  数值模拟    
Abstract: The influences of nano-SiO2 (instead of cement) and rubber powder (instead of river sand) on the compressive strength, flexural strength and splitting tensile strength at 28 days of recycled concrete were studied by mass substitution method. The two-dimensional random aggregate release program was established by MATLAB software, and the mechanical properties of recycled concrete under uniaxial compression were numerically simulated by ABAQUS software. Results show that the compressive strength, splitting tensile strength and flexural strength of recycled concrete increased first and then decreased with the increasing amount of rubber powder. When the amount of rubber powder was constant, the compressive strength, splitting tensile strength and flexural strength of recycled concrete increased with the increasing amount of nano-SiO2. Compared with the group without nano-SiO2, the compressive strength, splitting tensile strength and flexural strength of recycled concrete incorporated 1.5% nano-SiO2 were increased by 13.3%, 22.8% and 21%, respectively. The error between the simulation results under uniaxial compression test and the real test results on the reference group (nano-SiO2 and rubber content is 0) and the test group (1.5% nano-SiO2 and 5% rubber) was minor, which indicated that the calculated values obtained from the numerical simulation analysis were in good agreement with the experimental values.
Key words:  recycled aggregate concrete    rubber powder    nano-SiO2    mechanical property    numerical simulations
出版日期:  2021-12-10      发布日期:  2021-12-23
ZTFLH:  TU528  
基金资助: 湖北省重点研发计划项目(2020BAB071);国家自然科学基金项目(51908521);武汉工程大学研究生教育创新基金项目(CX2020109)
通讯作者:  wuqiaoyun@wit.edu.cn   
作者简介:  陈旭勇,武汉工程大学土木工程建筑学院,教授。2010年6月博士毕业于华中科技大学桥梁与隧道工程专业。武汉工程大学第二批中青年学术骨干培养人选,桥梁与隧道工程方向学术骨干。主要从事建筑固废资源化及桥梁可靠性评估研究。
吴巧云,武汉工程大学土木工程建筑学院,教授。2012年6月博士毕业于华中科技大学结构工程专业。主要从事工程结构抗震、振动控制与健康监测;土木工程材料(固废利用、再生混凝土)等研究。
引用本文:    
陈旭勇, 程子扬, 詹旭, 吴巧云. 纳米SiO2-橡胶粉再生混凝土力学性能试验研究及数值模拟[J]. 材料导报, 2021, 35(23): 23235-23240.
CHEN Xuyong, CHENG Ziyang, ZHAN Xu, WU Qiaoyun. Experimental and Numerical Research on Mechanical Properties of Recycled Concrete with Nano-SiO2-Rubber Powder. Materials Reports, 2021, 35(23): 23235-23240.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090209  或          http://www.mater-rep.com/CN/Y2021/V35/I23/23235
1 Ying J W, Meng Q J, Xiao J Z. Journal of Building Materials, 2017, 20(2),277(in Chinese).
应敬伟, 蒙秋江, 肖建庄. 建筑材料学报, 2017, 20(2),277.
2 Shaban W, Yang J, Su H L, et al. Journal of Advanced Concrete Techno-logy, 2019, 17(4),151.
3 Saravanakumar P, Abhiram K, Manoj B. Construction and Building Materials, 2016, 111,611.
4 Peng G F, Huang Y Z, Zhang J F. Journal of Building Materials, 2012,15(1),80(in Chinese).
朋改非, 黄艳竹, 张九峰. 建筑材料学报, 2012, 15(1),80.
5 Luo S R, Ye S C, Huang H S. Journal of Building Materials, 2018, 21(2),228(in Chinese).
罗素蓉, 叶世昌, 黄海生. 建筑材料学报, 2018, 21(2),228.
6 Hossain F,Shahjalal M, Islam K, et al. Construction and Building Materials,2019, 225,983.
7 Jalal M, Grasley Z, Gurganus C, et al. Construction and Building Mate-rials, 2020, 256,119478.
8 Li W, Long C, Tam V W Y, et al. Construction and Building Materials,2017,142,42.
9 Fan P F, Xu J W, Li Z. Concrete, 2014(11),90(in Chinese).
范鹏飞, 许家文, 李珠. 混凝土, 2014(11), 90.
10 Aiello M A, Leuzzi F. Waste Management,2010,30(8-9),1696.
11 Murugan R B, Natarajan C. Computers and Concrete, 2017, 20(3), 311.
12 Aslani F, Ma G, Yim Wan D L, et al. Journal of Cleaner Production, 2018, 182, 553.
13 Yan H S. Experimental study on mechanical properties of nano-SiO2 reinforced recycled coarse aggregate concrete. Master's Thesis, Qingdao University of Technology, China, 2017 (in Chinese).
闫洪生. 纳米SiO2强化再生粗骨料混凝土力学性能的试验研究. 硕士学位论文,青岛理工大学,2017.
14 Shang W B. Experimental study on mechanical properties and impermeability of rubber recycled concrete. Master's Thesis. North China University of Water Resources and Hydropower, China, 2019 (in Chinese).
尚文彪. 橡胶再生混凝土力学性能与抗渗性试验研究. 硕士学位论文,华北水利水电大学, 2019.
15 Liu J T. Study on nanomaterials based reactive powder concrete and its basic mechanical properties. Master's Thesis, Zhejiang University, China, 2016 (in Chinese).
刘金涛. 基于纳米材料的活性粉末混凝土及其基本力学性能研究, 硕士学位论文, 浙江大学, 2016.
16 Liu F, Huang H B, Xia X Z, et al. Journal of Building Materials,2011,14(2),173(in Chinese).
刘锋, 黄海滨, 夏晓舟, 等. 建筑材料学报, 2011, 14(2), 173.
17 Dang N N, Peng Y J, Zhou H P, et al. Chinese Journal of Solid Mecha-nics,2013,33(S1),58(in Chinese).
党娜娜, 彭一江, 周化平, 等. 固体力学学报, 2013, 33(S1), 58.
18 Duan D X. Mechanical properties of recycled concrete based on microstructures. Master's Thesis, Xi'an University of Technology, China, 2018. (in Chinese).
段东旭. 基于细观结构的再生混凝土力学性能研究.硕士学位论文,西安理工大学,2018.
19 Liu Q. Experimental study on failure mechanism of recycled concrete and numerical simulationof lattice structure. Ph.D. Thesis, Tongji University, 2010 (in Chinese).
刘琼. 再生混凝土破坏机理的试验研究和格构数值模拟. 博士学位论文,同济大学,2010.
20 Yao W, Yi J P, Mahmoud M, et al. Construction and Building Materials, 2019, 213(2019),91.
21 Jayasuriya A, Adams M P, Bandelt M J. Construction and Building Materials, 2018, 178,301.
22 Chen A S, Tang X P. Bulletin of the Chinese Ceramic Society, 2013,32(8),1521(in Chinese).
陈安生, 唐小萍. 硅酸盐通报, 2013, 32(8),1521.
23 Xu S N. Effect of pretreatment on rubber cement concrete performance. Master's Thesis, Hebei University of Technology, China, 2014 (in Chinese).
许少楠. 预处理对橡胶水泥混凝土性能的影响. 硕士学位论文, 河北工业大学, 2014.
24 Xie Z H, Guo Y C, Yuan Q Z, et al. Advances in Materials Science & Engineering, 2015, 2015,279584.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 唐宏波, 解永强, 张红梅, 王宏杰, 胡北辰. 新型五温区碲化汞单晶炉热场结构数值模拟[J]. 材料导报, 2021, 35(z2): 121-126.
[3] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[4] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[5] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[6] 赵金猛, 卢林, 王静荣, 张亮, 吴文恒, 朱冬, 郭帅东, 肖从越. 激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J]. 材料导报, 2021, 35(z2): 410-416.
[7] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[8] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[9] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[10] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[11] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[12] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[13] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[14] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[15] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed