Please wait a minute...
材料导报  2021, Vol. 35 Issue (3): 3076-3084    https://doi.org/10.11896/cldb.19090001
  无机非金属及其复合材料 |
水泥基材料微结构演变及其传输性能的数值模拟
刘志勇1,2, 夏溪芝3, 陈威威3, 张云升1, 刘诚2
1 东南大学江苏省土木工程材料重点实验室,南京 211189;
2 东南大学材料科学与工程学院,南京 211189;
3 中国矿业大学深部岩土力学与地下工程国家重点实验室,徐州 221116
Numerical Simulation of Microstructure Evolution and Transport Properties of Cement-based Materials
LIU Zhiyong1,2, XIA Xizhi3, CHEN Weiwei3, ZHANG Yunsheng1, LIU Cheng2
1 Jiangsu Key Laboratory for Construction Materials, Southeast University, Nanjing 211189, China;
2 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China;
3 State Key Laboratory of Geomechanics & Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China;
下载:  全 文 ( PDF ) ( 8766KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥基材料劣化的本质是由于侵蚀性介质通过传输通道进入材料内部生成腐蚀物质,从而对结构造成破坏。因此,结构耐久性与侵蚀介质在水泥基材料中的传输行为密切相关。已有的混凝土寿命预测模型和耐久性评估研究主要基于Fick和Darcy定律,本文从水泥基材料微结构出发,结合最新的国内外研究成果,对孔结构演变及其传输性能的数值模拟研究进展进行阐述,对促进结构耐久性的研究具有一定的指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘志勇
夏溪芝
陈威威
张云升
刘诚
关键词:  水泥基材料  水化模型  微观结构  孔结构  传输性能  数值模拟    
Abstract: The essence of deterioration for cement-based materials is that the corrosive media enters into the internal parts of concrete through various transport channels to generate corrosive products, thus leading to the damage of structures.Therefore,the structural durability is closely rela-ted to the transport behavior of erosion media in cement-based materials. Existing concrete life prediction models and durability assessment stu-dies are mostly based on Fick and Darcy's laws. Starting from microstructure of cement-based materials and combining with the latest research results at domestic and foreign, this paper expounds the progress of numerical simulation research on the microstructure evolution and transport performance of cement-based materials. It has certain guiding significance for the study of promoting structural durability.
Key words:  cement-based materials    hydration model    microstructure    pore structure    transport properties    numerical simulation
               出版日期:  2021-02-10      发布日期:  2021-02-19
ZTFLH:  TU528  
基金资助: 国家自然科学基金面上项目(51778613; 52078125).
作者简介:  刘志勇,东南大学江苏省土木工程材料重点实验室,研究员。2013年毕业于东南大学材料科学与工程学院,材料学博士。主要从事结构混凝土的耐久性及寿命预测、生态环保型建筑材料的制备与性能、胶凝材料微结构的计算机模拟等方面的研究。
引用本文:    
刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
LIU Zhiyong, XIA Xizhi, CHEN Weiwei, ZHANG Yunsheng, LIU Cheng. Numerical Simulation of Microstructure Evolution and Transport Properties of Cement-based Materials. Materials Reports, 2021, 35(3): 3076-3084.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090001  或          http://www.mater-rep.com/CN/Y2021/V35/I3/3076
1 Jin Z Q.The durability and life expectancy of concrete under severe environment in the western region. Ph.D. Thesis, Southeast University, China,2006(in Chinese).金祖权. 西部地区严酷环境下混凝土的耐久性与寿命预测.博士学位论文,东南大学,2006.2 Song L Y.Study on chloride corrosion durability of reinforced concrete marine structures. Ph.D. Thesis, Dalian University of Technology, China,2009(in Chinese).宋立元. 海洋钢筋混凝土结构氯离子腐蚀耐久性研究.博士学位论文,大连理工大学,2009.3 Vu K A T, Stewart M G.Structural Safety,2000,22(4),313.4 Li Y F.Research on environmental simulation test technology and related theory of concrete structure. Ph.D. Thesis, Hehai University, China,2005(in Chinese).李云峰. 混凝土结构环境模拟试验技术及相关理论研究.博士学位论文,河海大学,2005.5 Hong N F.Architecture Technology,2002(4),254(in Chinese).洪乃丰. 建筑技术,2002(4),254.6 Whittington H W, McCarter J, Forde M C.Magazine of Concrete Research,1981,33(114),48.7 Xiao L Z, Li Z J.Journal of Materials in Civil Engineering,2009,21(8),368.8 Liu Z Y, Zhang Y S, Jiang Q.Construction and Building Materials,2014,53,26.9 Zhang Y S, Sun W, Liu S F.Cement & Concrete Research,2002,32(9),1483.10 Kumar R, Bhattacharjee B.Cement & Concrete Research,2003,33(3),417.11 Liu Z Y, Wang J P, Zhang Y S, et al.Advances in Cement Research,2017,29(3),91.12 Gallucci E, Scrivener K, Groso A, et al.Cement & Concrete Research,2007,37(3),360.13 Kaufmann J.Cement and Concrete Composites,2010,32(7),514.14 Jiang L, Guan Y.Cement & Concrete Research,1999,29(4),631.15 Igarashi S, Kawamura M, Watanabe A.Cement and Concrete Composites,2004,26(8),977.16 Wang L J.Research on computer simulation of cement hydration and microstructure evolution in digital image system. Ph.D. Thesis, Dalian University of Technology, China,2005(in Chinese).王漓江. 数字图象系统水泥水化和微结构演变的计算机模拟的研究.博士学位论文,大连理工大学,2005.17 Bentz D P.CEMHYD3D: a three-dimensional cement hydration and microstructure development modeling package: version 3.0, National Institute of Standards and Technology, USA,2005.18 Cao X L, Liu Y S, Zhang H F, et al.Materials Reports A: Review Papers,2013,27(1),157(in Chinese).曹秀丽,刘元寿,张红飞,等.材料导报:综述篇,2013,27(1),157.19 Breugel K V.Cement & Concrete Research,1992,25(2),319.20 Qian R S, Huang R, Zhang Y S, et al.The 6th Annual Conference of Cement Branch of Chinese Portland Society. Yancheng,2016,pp.10.21 钱如胜,黄冉,张云升,等.中国硅酸盐学会水泥分会第六届学术年会.盐城,2016,pp.10.21 Xie D Q, Yang Y G, Zhang Y S.Advanced Materials Research,2014,997,303.22 Bishnoi S, Scrivener K L.Cement & Concrete Research,2009,39(4),266.23 Feng P, Miao C W, Bullard J W.Cement and Concrete Composites,2014,49(12),9.24 Van B K.Simulation of hydration and formation of structure in hardening cement-based materials, Ph.D. Thesis, Delft University of Technology, Holland,1991.25 Ye G.Cement & Concrete Research,2005,35(1),167.26 Wang L J, Cao W.Journal of Eastern Liaoning University (Natural Science Edition),2009,12(2),5(in Chinese).王漓江,曹伟.辽东学院学报(自然科学版),2009,12(2),5.27 Maekawa K, Ishida T, Kishi T.Journal of Advanced Concrete Technology,2003,1(2),91.28 Suzuki Y, Tsuji Y, Maekawa K, et al.Proceedings of the Japan Society of Civil Engineers, DOI: 10.2208/jscej.1990.414_155.29 Bentz D P.Journal of the American Ceramic Society,1997,80(1),3.30 Wang Y W.Cement hydration simulation and algorithm in cellular auto-mata environment. Ph.D. Thesis, Wuhan University of Technology, China,2011(in Chinese).王燕文. 元胞自动机环境下水泥水化过程模拟及算法.博士学位论文,武汉理工大学,2011.31 Bentz D P.Guide to using CEMHYD3D: a three-dimensional cement hydration and microstructure development modelling package, National Institute of Standards and Technology, USA,1997.32 Navi P, Pignat C.Advanced Cement Based Materials,1996,4(2),58.33 Jia X, Williams R A.Powder Technology,2001,120(3),175.34 Bentz D P, Stutzman P E.ASTM International,DOI:10.1520/STP12645S.35 Garboczi E J.Cement & Concrete Research,2002,32(10),1621.36 Wang L B, Frost J D, Lai J S.Journal of Computing in Civil Enginee-ring,2004,18(1),28.37 Erdo<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml1-1005-023X-35-3-3076"><mml:mover><mml:mrow><mml:mi mathvariant="normal">g</mml:mi></mml:mrow><mml:mrow><mml:mi>?</mml:mi></mml:mrow></mml:mover></mml:math></inline-formula>an S T, Nie X, Stutzman P E, et al.Cement & Concrete Research,2010,40(5),731.38 Latham J P, Munjiza A.Philosophical Transactions,2004,362(1822),1953.39 Gélinas V, Vidal D.Powder Technology,2010,203(2),254.40 Xu W X, Chen H S.Materials Characterization,2012,66(1),16.41 Lee Y, Fang C, Tsou Y R, et al.Granular Matter,2009,11(5),307.42 Gao Z G, Liu G Y.Journal of Tsinghua University(Science and Technology),2003,43(5),710(in Chinese).高政国,刘光廷.清华大学学报(自然科学版),2003,43(5),710.43 Keys A S, Iacovella C R, Glotzer S C.Journal of Computational Physics,2010,230(17),6438.44 Zhu D X.Spatial analytic geometry, Beijing normal University Press, China,1981(in Chinese).朱鼎勋. 空间解析几何学,北京师范大学出版社,1981.45 Xu W X, Chen H S, Lv Z.Journal of Wuhan University of Technology,2010,25(4),717.46 Xu W X, Chen H S.Powder Technology,2012,221(5),296.47 Xu W X, Chen H S, Liu L.Industrial & Engineering Chemistry Research,2013,52(20),6678.48 Pignat C, Navi P, Scrivener K.Materials & Structures,2005,38(4),459.49 Bryant S L, King P R, Mellor D W.Transport in Porous Media,1993,11(1),53.50 Bentz D P.Materials & Structures,1999,32(3),187.51 Guang Y E.Journal of Colloid & Interface Science,2003,262(1),149.52 Sorensen J, Bekri S, Xu K, et al.Journal of Petroleum Science & Engineering,2000,25(3),107.53 Mehta P K.7th Intemational congress on the chemistry of cement. France,1980,pp.1.54 Song H W, Pack S W, Nam S H, et al.Construction and Building Materials,2010,24(3),315.55 Li K.Numerical determination of permeability in unsaturated cementitious materials. PhD. Thesis, Delft University of Technology, Holland,2017.56 Zalzale M.Water dynamics in cement paste: insights from lattice boltzmann modelling. PhD. Thesis, Ecole polytechnique federale DE lausanne, Swiss,2014.57 Radmila M.Introduction to digital core analysis: 3D reconstruction, numerical flow simulations and pore network modeling. PhD. Thesis, Norwgian University of Science and Technology, Norway,2017.58 Zhang M Z.Multiscale lattice boltzman finite element modelling of transport properties in cement-based materials. PhD. Thesis, Delft University of Technology, Holland,2013.59 Zhang H Z.Lattice modelling of chloride diffusivity of cement paste. Master's Thesis, Harbin Institute of Technology, China,2015(in Chinese).张洪智. 基于格构模型的水泥石氯离子扩散研究.硕士学位论文,哈尔滨工业大学,2015.60 Garboczi E J, Bentz D P.Advanced Cement Based Materials,1998,8(2),77.61 Xi Y, Willam K, Frangopol D M.Journal of engineering mechanics,2000,126(3),258.62 Caré S, Hervé E.Transport in Porous Media,2004,56(2),119.63 Garboczi E J, Bentz D P.Journal of Materials Science,1992,27(8),2083.64 Liu Z Y, Chen W W, Zhang Y S, et al.Construction and Building Materials,2016,120,494.65 Promentilla M A B, Sugiyama T, Hitomi T, et al.Cement & Concrete Research,2009,39(6),548.66 Liu L, Sun W, Ye G, et al.Journal of the Chinese Ceramic Society,2010,38(11),2159(in Chinese).刘琳,孙伟,叶光,等.硅酸盐学报,2010,38(11),2159.67 Ravi P.Lattice boltzmann method based framework for simulating physico-chemical processes in heterogeneous porous media and its application to cement paste. Ph.D. Thesis, Ghent University, Holland,2016.68 Zhang M Z, Ye G, Klaas V B.Cement & Concrete Research,2012,42(11),1524.69 Leech C, Lockington D, Dux P.Materials and Structures,2003,36(6),413.70 Roels S, Carmeliet J.International Journal of Heat and Mass Transfer,2006,49(25-26),4762.71 Wang L, Ueda T.Ocean Engineering,2011,38(4),519.72 Li X X, Chen S H, Xu Q, et al.Computers and Structures,2017,190,61.73 Abyaneh D, Wong H S, Buenfeld N R.Computational Materials Science,2014,87,54.
[1] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[2] 郭丽萍, 薛晓丽, 曹园章, 费香鹏, 丁聪. 水泥基胶凝材料氧化物含量与氯离子结合量的定量关系[J]. 材料导报, 2021, 35(2): 2039-2045.
[3] 石加顺, 钱如胜, 张云升, 陈逸东, 钱佳佳, 刘志勇. 水泥基材料气体渗透性测试方法及与耐久性关系的研究进展[J]. 材料导报, 2021, 35(1): 1121-1130.
[4] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[5] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[6] 董龙瑞, 杭美艳, 周港明, 贾春, 徐俊伟. 洗罐车泥浆对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 242-245.
[7] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[8] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[9] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[10] 刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报, 2020, 34(8): 8131-8135.
[11] 徐国财, 黎军顽, 左鹏鹏, 吴晓春. 热-机械载荷下H13钢力学响应行为实验和数值分析[J]. 材料导报, 2020, 34(8): 8159-8164.
[12] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[13] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[14] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[15] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed