Please wait a minute...
材料导报  2021, Vol. 35 Issue (1): 1121-1130    https://doi.org/10.11896/cldb.20040016
  无机非金属及其复合材料 |
水泥基材料气体渗透性测试方法及与耐久性关系的研究进展
石加顺1,2, 钱如胜1,2, 张云升1,2,3, 陈逸东1,2, 钱佳佳1,2, 刘志勇1,2
1 东南大学材料科学与工程学院,南京 211189
2 江苏省土木工程材料重点实验室,南京 211189
3 兰州理工大学土木工程学院,兰州 730050
Advances in Gas Permeability Test Methods and Its Relationships with Durability for Cementitious Materials
SHI Jiashun1,2, QIAN Rusheng1,2, ZHANG Yunsheng1,2,3, CHEN Yidong1,2, QIAN Jiajia1,2, LIU Zhiyong1,2
1 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 Key Laboratory for Civil Engineering Material of Jiangsu, Nanjing 211189, China
3 College of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 7036KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土耐久性一直是土木工程材料领域的研究热点,而渗透性是耐久性问题的关键。根据渗透性试验所用渗透介质的不同,可将试验方法分为三类:水渗透法、氯离子渗透法和气体渗透法。其中,气体渗透法具有不改变材料组成和微观结构等优点,逐渐被学者采用。
   目前,国内外常用的气体渗透性测试方法可分为现场试验方法和实验室操作方法。现场试验方法主要包括钻孔测试法和表层测试法,实验室操作方法主要分为恒压测试法和变压测试法。然而,使用不同的测试方法得到的结果无法直接比较,甚至有量纲上的差别。除此之外,气体渗透性虽可作为混凝土耐久性的重要指标,但其对耐久性的具体作用研究很少。因此,建立各测试方法之间的转化关系以及气体渗透率与其他耐久性参数的联系是当前的研究焦点。
   本文系统总结了当前国内外混凝土气体渗透性测试原理、方法,以及气体渗透率与液体渗透率、气体扩散系数、氯离子扩散系数及碳化深度等耐久性参数之间的定量关系。以期基于气体渗透率来反映水泥基材料耐久性并为此提供理论知识与科学基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石加顺
钱如胜
张云升
陈逸东
钱佳佳
刘志勇
关键词:  水泥基材料  气体渗透性  耐久性  测试方法    
Abstract: The concrete durability has always been a research hotspot in the field of civil engineering materials, and permeability is taken as key point for its durability. The methods of permeating testing can be classified as three types according to different permeation mediums: water permeability testing, chloride permeability testing and gas permeability testing. Gas permeability method has its advantages of the testing procedure without damages on the composition and microstructure of materials, and thus having been adopted gradually by scholars.
Currently, the commonly used methods of gas permeability testing can be classified as field testing and laboratory operating methods. The former mainly include drilling testing method and surface testing method, while the latter are classified as constant-pressure flow method and variable-pressure method. However, the results obtained by various testing methods are generally hard to be compared, or even of entirely different orders of magnitude, with each other. Besides, though gas permeability can be used as an important indicator for concrete durability, few works has focused on its effect to the durability. Therefore, the current key point is to establish the conversion relationship between various testing methods and the relationship between gas permeability and other durability indicators.
This review has summarized systematically the testing theories and method principles for concrete and established the quantitative relationships between gas permeability and other durability indicators including liquid permeability, gas diffusion coefficient, chloride-ion diffusion coefficient and carbonization. It is expected to be beneficial to the enhancement of gas permeability utilization, and to provide theoretical knowledge and scientific basics for evaluating the durability of cementitious materials.
Key words:  cementitious materials    gas permeability    durability    testing method
               出版日期:  2021-01-10      发布日期:  2021-01-19
ZTFLH:  TU528  
基金资助: 国家重点基础研究发展计划项目(2019YFC1904904);国家自然科学基金(51878153;51808189);江苏省研究生科研与实践创新计划(KYCX19_0072)
作者简介:  石加顺,东南大学材料科学与工程学院,硕士研究生,主要从事水泥基材料气体渗透性研究。
张云升,东南大学材料科学与工程学院,教授、博士研究生导师,主要从事水泥基材料传输行为、高与超高性能混凝土、结构混凝土耐久性及寿命预测等方面的研究。
引用本文:    
石加顺, 钱如胜, 张云升, 陈逸东, 钱佳佳, 刘志勇. 水泥基材料气体渗透性测试方法及与耐久性关系的研究进展[J]. 材料导报, 2021, 35(1): 1121-1130.
SHI Jiashun, QIAN Rusheng, ZHANG Yunsheng, CHEN Yidong, QIAN Jiajia, LIU Zhiyong. Advances in Gas Permeability Test Methods and Its Relationships with Durability for Cementitious Materials. Materials Reports, 2021, 35(1): 1121-1130.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040016  或          http://www.mater-rep.com/CN/Y2021/V35/I1/1121
1 Mehta P K. In: 2nd International Conference on Durability. Montreal,1991,pp.1.
2 Yang Q R, Zhu B R. Low Temperature Architecture Technology,2003,5(7),7(in Chinese).
杨钱荣,朱蓓蓉.低温建筑技术,2003,5(7),7.
3 Liu Z Y, Sun W, Zhou X G. Concrete,2005(11),3(in Chinese).
刘志勇,孙伟,周新刚.混凝土,2005(11),3.
4 Zhou X C. Sichuan Building Materials,2011,37(1),18(in Chinese).
周啸尘.四川建材,2011,37(1),18.
5 Wu X M. Hydro Science and Cold Zone Engineering,2019,2(4),33(in Chinese).
吴晓梅.水利科学与寒区工程,2019,2(4),33.
6 Martin G R. Magazine of Concrete Research,1986,38(135),90.
7 Zhang G R, Han Y X, Skoczylas F, et al. Bulletin of the Chinese Ceramic Society,2015(S1),116(in Chinese).
张国荣,韩依璇,Skoczylas F,等.硅酸盐通报,2015(S1),116.
8 Gui Q. Study on gas permeability of cement-based materials. Ph.D. Thesis, Tsinghua University, China,2016(in Chinese).
桂强.水泥基材料气体渗透性研究.博士学位论文,清华大学,2016.
9 Romer M. Materials and Structures,2005,38(5),541.
10 Starck S, Beushausen H, Alexander M, et al. Materials and Structures,2017,50(3),177.
11 Gui Q, Qin M F, Li K F. Journal of the Chinese Ceramic Society,2015,43(10),1500(in Chinese).
桂强,秦敏峰,李克非.硅酸盐学报,2015,43(10),1500.
12 Figg J W. Magazine of Concrete Research,1973,25(85),213.
13 Cather R, Figg J W, Marsden A F, et al. Magazine of Concrete Research,1984,36(129),241.
14 Dhir R K, Hewlett P C, Chan Y N. Magazine of Concrete Research,1987,39(141),183.
15 Claisse P A, Ganjian E, Adham T A. Cement and Concrete Research,2003,33(1),47.
16 Claisse P A, Ganjian E, Adham T A. Magazine of Concrete Research,2003,55(2),125.
17 Schonlin K, Hilsdorf H K. In: Concrete Durability: Katharine and Bryant Mather International Conference. Detroit,1987,pp.207.
18 Davis A G, Ansari F, Gaynor R D, et al. American Concrete Institute,1998,228,33.
19 Basheer P A M. #Clam'permeability tests for assessing the durability of concrete. Ph.D. Thesis, Queen's University of Belfast, UK,1991.
20 Basheer P A M. Structures and Buildings,1993,99(1),74.
21 Long A E, Basheer P A M, Basheer L. Advances in Construction Mate-rials, Christian U G, ed., Springer, Germany,2007,pp.591.
22 Basheer P A M, Montgomery F R, Long A E. Nondestructive Testing and Evaluation,1995,12(1),53.
23 Yang K, Basheer P A M, Magee B, et al. Construction and Building Materials,2013,48,306.
24 Yang K, Basheer P A M, Bai Y, et al. NDT and E International,2014,64,30.
25 Torrent R J. Materials and Structures,1992,25(6),358.
26 Jiang R, Xue C X, Yang G, et al. China Concrete and Cement Products,2018(3),82(in Chinese).
蒋锐,薛晨曦,杨戈,等.混凝土与水泥制品,2018(3),82.
27 Kollek J J. Materials and Structures,1989,22(3),225.
28 Rilem T C. Materials and Structures,1999,32(4),174.
29 Klinkenberg L J. In: Drilling and production practice. American Petro-leum Institute,1941,2,200.
30 Zhang D D, Li K F. Cement and Concrete Composites,2019,104,103379.
31 Wang Z P, Wang Zhen. Journal of Building Materials,2010,13(1),80(in Chinese).
王中平,王振.建筑材料学报,2010,13(1),80.
32 Wang Z P, Wu K R, Zhang Q Y, et al. Journal of Building Materials,2001,4(4),317(in Chinese).
王中平,吴科如,张青云,等.建筑材料学报,2001,4(4),317.
33 Wang Z P, Yang H Y, Zhao Y T, et al. Concrete,2019(6),8(in Chinese).
王中平,杨浩宇,赵亚婷,等.混凝土,2019(6),8.
34 Liang G T, Xie D Q, Shi L, et al. Concrete,2019(12),49(in Chinese).
梁冠亭,谢德擎,石亮,等.混凝土,2019(12),49.
35 Cabrera J G, Lynsdale C J. Magazine of Concrete Research,1988,40(144),177.
36 Cabrera J G, Gowripalan N, Wainwright P J. Magazine of Concrete Research,1989,41(149),193.
37 Shafiq N, Cabrera J G. Cement and Concrete Composites,2004,26(4),381.
38 Gallé C, Daian J F. Magazine of Concrete Research,2000,52(4),251.
39 Gallé C, Sercombe J. Materials and Structures,2001,34(10),619.
40 Farage M C R, Sercombe J, Galle C. Cement and Concrete Research,2003,33(7),1047.
41 Ballim Y. Concrete Beton,1991,61,13.
42 Blight G E. Civil Engineer in South Africa,1977,19,123.
43 Hamami A A, Turcry P, Aït-Mokhtar A. Cement and Concrete Research,2012,42(2),490.
44 Zhao C H, Wang C Y, Wang J S. Concrete,1994(3),52(in Chinese).
赵翠华,王昌义,王家顺.混凝土,1994(3),52.
45 Schonlin K, Hilsorf H K. Permeability of Concrete,1988,108,99.
46 Waterborne Department of Minstry of Transport of the People's Repubilc of China. Testing Code of Concrete for Port and Waterwog Engineering, Standards Press of China,1998(in Chinese).
交通部行业标准.水运工程混凝土试验规程,中国标准出版社,1998.
47 Pang C M, Luo S Y, Qin H G, et al. Journal of Southeast University (Natural Science Edition),2014(6),25(in Chinese).
庞超明,罗时勇,秦鸿根,等.东南大学学报(自然科学版),2014(6),25.
48 Meziani H, Skoczylas F. Materials and Structures,1999,32(6),403.
49 Loosveldt H, Lafhaj Z, Skoczylas F. Cement and Concrete Research,2002,32(9),1357.
50 Yssorche M P, Bigas J P, Ollivier J P. Materials and Structures,1995,28(7),401.
51 Tsimbrovska M, Kalifa P, Quenard D, et al. In: Transaction of the 14th International Conference on Structural Mechanics in Reactor Technology. Lyon, France,1997,pp.475.
52 Care S. In: Fourth International Conference on Fracture Mechanics of Concrete and Concrete Structures. Lisse, France,2001,pp.191.
53 Care S, Derkx F. Construction and Building Materials,2011,25(3),1248.
54 Čalogović V. Cement and Concrete Research,1995,25(5),1054.
55 Bjegović D, Serdar M, Oslaković I S, et al. Beushausen H, Luco L F., ed.,Performance-based specifications and control of concrete durability, Springer, South Africa,2016,pp.51.
56 Alexander M G, Magee B J. Cement and Concrete Research,1999,29(6),917.
57 Kundt A, Warburg E. Philosophical Magazine and Journal of Science,1875,50(328),53.
58 Bamforth P B. Magazine of Concrete Research,1987,39(138),3.
59 Hilsdorf H, Kropp J. Performance criteria for concrete durability, CRC Press, Germany,1995.
60 Villani C, Loser R, West M J, et al. Cement and Concrete Composites,2014,53,357.
61 Lawrence C. D. In: British Ceramic Society Meeting, Chemistry and Chemically-related Properties of Cement. London,1984,pp.277.
62 Salvoldi B G, Beushausen H, Alexander M G. Construction and Building Materials,2015,85,30.
63 Basheer L, Kropp J, Cleland D J. Construction and Building Materials,2001,15(2),93.
64 Torrent R, Denarié E, Jacobs F, et al. Materials and Corrosion,2012,63(12),1127.
65 Imamoto K, Shimozawa K, Nagayama M, et al. In: Concrete in Aggressive Aqueous Environments, Performance, Testing and Modeling. Toulouse, France,2009,pp.508.
66 Kasai Y, Nagano M. ACI,1984,82,525.
67 Torrent R J. In: The Third International Conference on Sustainable Construction Materials and Technologies (SCMT 3). Japan,2013,pp.18.
68 Olek J, Lu A, Feng X, et al. Purdue University-Joint Transportation Research Program Technical Report Series, Purdue University, USA,2002.
[1] 赵尚传, 李小鹏, 王少鹏. 混凝土自修复微胶囊壁材的研究现状与进展[J]. 材料导报, 2020, 34(Z2): 201-205.
[2] 常洪雷, 陈繁育, 金祖权, 王广月, 刘健. 再生骨料混凝土在护岸工程应用的可行性[J]. 材料导报, 2020, 34(Z2): 206-211.
[3] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[4] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[5] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[6] 王锐, 黄榜彪, 莫济成, 李青, 朱基珍. 冻融循环对烧结页岩多孔砖砌体抗剪性能的影响[J]. 材料导报, 2020, 34(Z1): 258-260.
[7] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[8] 白亚飞, 王栋民. 公路混凝土用低坍落度塑性混凝土和无坍落度干硬性混凝土用引气剂的
国内外研究进展
[J]. 材料导报, 2020, 34(7): 7099-7106.
[9] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[10] 秦晓川,刘加平,石亮,穆松,蔡景顺,吴贞杰,周霄骋,刘建忠. 荷载与氯离子耦合作用下混凝土耐久性试验方法与装置的研究进展[J]. 材料导报, 2020, 34(3): 3106-3115.
[11] 张少辉, 王艳, 牛荻涛. 废旧纤维在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(23): 23042-23050.
[12] 谢振康, 金伟良, 毛江鸿, 张军, 樊玮洁, 夏晋. 双向电迁移后混凝土内钢筋氢含量变化及影响[J]. 材料导报, 2020, 34(2): 2039-2045.
[13] 刘志勇, 汤安琪, 王加佩, 张云升. 非饱和水泥基复合材料的氯离子传输性能研究进展[J]. 材料导报, 2020, 34(15): 15083-15091.
[14] 周鹏, 赵华, 陶海征, 祖成奎, 刘永华, 石凯文, 张瑞. 硫系玻璃熔体的黏度测试方法和黏温方程[J]. 材料导报, 2019, 33(Z2): 181-188.
[15] 游敏, 李明波, 袁有录, 林高, 余海洲. 胶粘剂冲击性能测试方法研究现状[J]. 材料导报, 2019, 33(Z2): 210-214.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed