Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3106-3115    https://doi.org/10.11896/cldb.19030041
  无机非金属及其复合材料 |
荷载与氯离子耦合作用下混凝土耐久性试验方法与装置的研究进展
秦晓川1,2,,刘加平3,石亮1,2,穆松1,2,蔡景顺1,2,吴贞杰1,2,周霄骋1,2,刘建忠1,2
1 江苏省建筑科学研究院高性能土木工程材料国家重点实验室,南京 210008
2 江苏苏博特新材料股份有限公司,南京211103
3 东南大学材料科学与工程学院,南京211189
Research Progress of Concrete Durability Testing Method and Device Under the Coupling Effect of Load and Chloride Ion
QIN Xiaochuan1,2,,LIU Jiaping3,SHI Liang1,2,MU Song1,2,CAI Jingshun1,2,WU Zhenjie1,2,ZHOU Xiaocheng1,2,LIU Jianzhong1,2
1 State Key Laboratory of High Performance Civil Engineering Materials,Jiangsu Research Institute of Building Science,Nanjing 210008,China
2 Jiangsu Sobute New Materials Co.,Ltd.,Nanjing 211103,China
3 School of Materials Science and Engineering,Southeast University,Nanjing 211189,China
下载:  全 文 ( PDF ) ( 30552KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 20世纪20年代初,随着设计理论和施工技术的不断成熟,钢筋混凝土开始被大规模应用于基础建设中。钢筋混凝土兼具钢与混凝土的优点——坚固又耐用,但是人们却低估了环境因素对它的影响并为此付出了巨大的代价,氯离子、碳化、冻融、硫酸盐、化学侵蚀等环境因素均可导致钢筋混凝土的耐久性劣化。其中,氯离子引起的钢筋锈蚀问题最为突出,空气或水中的氯离子可穿透混凝土保护层到达钢筋表面,从而引起钢筋锈蚀。针对这一问题,学者们集中研究了氯离子如何穿透混凝土,并取得了相当丰硕的成果。然而,服役中的钢筋混凝土需时刻承受荷载的作用,复杂的应力状态会引起混凝土材料内部细观结构的变化,从而影响甚至改变氯离子的扩散行为。上述研究忽略了荷载因素,难以应用于实际工程。此外,氯离子扩散行为还与应力在材料内累积的损伤有关。因此,近年来,荷载与氯离子侵蚀耦合的耐久性研究越来越受到重视,且已成为重大工程项目中不可缺少的一部分。针对实际工程中钢筋混凝土的荷载形式,研究人员开发了大量耦合试验方法与装置,较为成熟的有单轴拉伸、单轴压缩、静力弯曲分别与氯离子耦合。但研究人员在运用上述方法时所采用的实验制度不同,导致其结果没有可比性。此外,还有部分研究人员探索了更为复杂的耦合因素(劈裂拉伸、偏心压缩、疲劳弯曲、静力剪切分别与氯离子耦合),复杂耦合因素更符合实际工程状态,也是近年来研究的趋势,但关于它的研究仍处在起步阶段。本文归纳了拉伸、压缩、弯曲、剪切荷载作用下混凝土的抗氯离子侵蚀耐久性试验方法,对存在的问题进行了讨论,并提出了改进建议和进一步的研究方向,以期为制定统一、标准化的耦合耐久性试验方法与装置提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦晓川
刘加平
石亮
穆松
蔡景顺
吴贞杰
周霄骋
刘建忠
关键词:  钢筋混凝土  荷载  氯离子  耐久性  试验方法  耦合    
Abstract: In the early 1920s, with the development of design theory and construction technology, reinforced concrete began to be widely used in infrastructure construction. Reinforced concrete combined the advantages of both steel and concrete—strong and durable. However, the impact of environmental factors was underestimated and a huge price was paid for it. Environmental factors such as chloride ion, carbonization, freeze-thaw, sulfate, chemical erosion and so on can lead to deterioration of reinforced concrete durability. Amongst, chloride induced steel corrosion is the most prominent in all durability problems. In air or water, chloride ion can penetrate the protective layer of concrete and reach the reinforcing bar's surface, causing corrosion. A large number of theoretical and experimental studies focused on describing chloride ion penetration through concrete, and achieved considerable results.
However,the in-service reinforced concrete bears load all the time, complex stress state causes the internal meso-structure change of concrete materials, and affects or even changes the diffusion behavior of chloride, the above study of chloride ion diffusion neglecting the load factors, which makes it difficult to transform the above research results from laboratory to practical engineering. In addition, the chloride ion diffusion behavior is also related to the cumulative damage of stress history. Therefore, in recent years, more and more attention has been paid to the durability study about the coupling of load and chloride ion, and it has become an indispensable part of major engineering projects.
According to the load state in practical projects, researchers have developed a large number of coupling test methods and devices. The relative mature ones are uniaxial tension, uniaxial compression and static bending, coupled with chloride respectively. However, different experimental details used by different researchers lead to incomparable experimental results. Besides, some researchers have explored more complex coupling factors (splitting tension, eccentric compression, fatigue bending, static shear coupled with chloride respectively). Complex coupling factors are more similar with the practical projects, and are also the trend of recent research, but they are still in the initial stage.
In this paper, the test methods of chlorideion corrosion resistance of concrete under tension, compression, bending and shear loads are summarized. The existing problems are discussed, suggestions for improvement and directions for further study are put forward, in order to provide reference for formulating unified and standardized coupling durability test methods and devices.
Key words:  reinforced concrete    loading    chloride ion    durability    experimental method    coupling
                    发布日期:  2020-01-03
ZTFLH:  TU502  
基金资助: 国家重点研发计划(2017YFB0309904);江苏省自然科学基金(BK20161101;BK20171111);江苏省重点研发计划课题(BE2017158);江苏省住房和城乡建设厅科技项目(2018JH017);中国铁路总公司科技项目(2017G007-C);江苏省“双创博士”
通讯作者:  qinxiaochuan@cnjsjk.cn   
作者简介:  秦晓川,博士,工程师。高性能土木工程材料国家重点实验室,江苏苏博特新材料股份有限公司,研发骨干。2008年6月获扬州大学土木工程专业学士学位,2011年6月获扬州大学结构工程专业硕士学位,2017年3月获东南大学土木工程专业博士学位。先后入选江苏省“双创博士”,江苏省南京市“江宁区高层次创新人才”。主要从事混凝土材料与结构耐久性、超高强混凝土材料及其应用的研究;刘加平,教授,博士研究生导师。享受国务院特殊津贴的专家。教育部“长江学者”特聘教授,国家杰出青年基金获得者,高性能土木工程材料国家重点实验室主任兼首席科学家。入选国家“万人计划”科技创新领军人才、“新世纪百千万人才工程”国家级人选、江苏省“333工程”第一层次培养对象等人才计划;“中国青年科技奖”、全国“五一”劳动奖章、全国第二届“杰出工程师奖”等荣誉。兼任国家建设部特聘专家,中国混凝土与水泥制品协会副会长,美国混凝土学会(ACI)中国分会副会长,全国混凝土标准化技术委员会副主任委员等职。长期从事高性能混凝土基础研究、技术开发与应用研究。围绕水泥基材料的收缩开裂、耐久性和高性能化三大关键问题,先后完成了包括“973”项目、国家自然科学基金重点项目和“十一五、十二五”国家科技支撑计划项目在内的各类科研课题30余项。发明的水泥基材料早期变形与开裂测试系统被荷兰代尔夫特大学等二十多所国际知名研究机构采用;研究成果应用于长江三峡、京沪高铁、田湾核电、港珠澳大桥等国家重大工程。先后荣获国家科技进步二等奖3项,国家技术发明二等奖1项,省部级科技进步一等奖4项、二等奖7项、三等奖多项;获授权发明专利110余项,发表学术论文300余篇,其中SCI、EI收录137篇。
引用本文:    
秦晓川,刘加平,石亮,穆松,蔡景顺,吴贞杰,周霄骋,刘建忠. 荷载与氯离子耦合作用下混凝土耐久性试验方法与装置的研究进展[J]. 材料导报, 2020, 34(3): 3106-3115.
QIN Xiaochuan,LIU Jiaping,SHI Liang,MU Song,CAI Jingshun,WU Zhenjie,ZHOU Xiaocheng,LIU Jianzhong. Research Progress of Concrete Durability Testing Method and Device Under the Coupling Effect of Load and Chloride Ion. Materials Reports, 2020, 34(3): 3106-3115.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030041  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3106
1 Mehta P K, Burrows R W. Indian Concrete Journal, 2001, 75(7), 437.
2 Neville A. Materials and Structures, 2001, 34(2), 114.
3 Konin A, Francois R, Arliguie G. Materials and Structures, 1998, 31(5), 310.
4 Deng H W, Zeng J S, Zheng J, et al. Low Temperature Architecture Technology, 2010, 32(10), 3 (in Chinese).
邓宏卫, 曾京生, 郑俊, 等. 低温建筑技术, 2010, 32(10), 3.
5 Zhang J, Wang X B, Xu J G. New Building Materials, 2016, 43(7), 72 (in Chinese).
张进, 王喜彬, 徐建光. 新型建筑材料, 2016, 43(7), 72.
6 Yao Y, Wang L, Wittmann F H, et al. Materials & Structures, 2017, 50(2), 155.
7 Álava H E, Tsangouri E, De Belie N, et al. Construction and Building Materials, 2016, 127, 527.
8 Wang H, Lu C, Jin W, et al. Journal of Materials in Civil Engineering, 2011, 23(7), 1043.
9 Yan Y D, Lu C H, Liu R G. Industrial Construction, 2013, 43(1), 75 (in Chinese).
延永东, 陆春华, 刘荣桂. 工业建筑, 2013, 43(1), 75.
10 Lim C, Gowripalan N, Sirivivatnanon V. In: Concrete 99 : Our Concrete Environment : Concrete Institute of Australia 19th Biennial Conference. Sydney, 1999, pp.155.
11 Xu J, Li F, Zhao J, et al. Construction and Building Materials, 2018, 170, 207.
12 Wu J, Li H, Wang Z, et al. Construction and Building Materials, 2016, 112, 733.
13 Zhang W P, Zhang Q Z, Gu X L, et al. Journal of Jiangsu University (Natural Science Edition), 2013, 34(1), 101 (in Chinese).
张伟平, 张庆章, 顾祥林, 等. 江苏大学学报(自然科学版), 2013, 34(1), 101.
14 Han L H, Hou C, Wang Q L. Journal of Constructional Steel Research, 2012, 71, 11.
15 Han L H, Hou C C, Wang Q L. Journal of Constructional Steel Research, 2014, 103, 23.
16 Cao Y, Yao Y, Wang L, et al. New Building Materials, 2016, 43(8), 81 (in Chinese).
曹银, 姚燕, 王玲, 等. 新型建筑材料, 2016, 43(8), 81.
17 Bao J, Wang L. Construction and Building Materials, 2017, 156, 708.
18 Wang J, Basheer P A M, Nanukuttan S V, et al. Construction and Buil-ding Materials, 2016, 108, 56.
19 Yin R, Li B, Zhang C, et al. Construction and Building Materials, 2018, 162, 697.
20 Lei M, Peng L, Shi C. Tunnelling and Underground Space Technology, 2014, 42, 15.
21 Yang D Y, Luo J J. Construction and Building Materials, 2012, 36, 129.
22 Wu J, Faye P N, Zhang W, et al. Construction and Building Materials, 2018, 158, 97.
23 Mu R, Miao C, Luo X, et al. Cement and Concrete Research, 2002, 32(7), 1061.
24 Qi H T, Dong L M. China Science and Technology Information, 2008 (5), 43 (in Chinese).
齐海涛, 董黎明. 中国科技信息, 2008 (5), 43.
25 Qi B, Gao J, Chen F, et al. Construction and Building Materials, 2018, 174, 130.
26 Chen F, Gao J, Qi B, et al. Construction and Building Materials, 2017, 151, 164.
27 Fang X, Han J D, Wang S G, et al. Concrete, 2016(2), 21 (in Chinese).
方璇, 韩建德, 王曙光, 等. 混凝土, 2016(2), 21.
28 Yin S H, Guo G F, Zhang E M, et al. Journal of South China University of Technology (Natural Science Edition), 2013, 41(6), 133 (in Chinese).
殷素红, 郭高峰, 张二猛, 等. 华南理工大学学报(自然科学版), 2013, 41(6), 133.
29 Xing F, Leng F G, Feng N Q, et al. Concrete, 2004(5), 3 (in Chinese).
邢锋, 冷发光, 冯乃谦, 等. 混凝土, 2004(5), 3.
30 He S Q, Gong J X. Journal of Building Materials, 2005, 8(2), 134 (in Chinese).
何世钦, 贡金鑫. 建筑材料学报, 2005, 8(2), 134.
31 Zhao S C, Gong J X, Shui J F. China Journal of Highway and Transport, 2007, 20(4), 76 (in Chinese).
赵尚传, 贡金鑫, 水金锋. 中国公路学报, 2007, 20(4), 76.
32 Wang Y Z, Liu H, Zhou H F, et al. Materials Science & Technology, 2015, 23(6), 12 (in Chinese).
王元战, 刘恒, 周海锋, 等. 材料科学与工艺, 2015, 23(6), 12.
33 Jin N G, Xu Y B, Fu C Q, et al. Journal of the Chinese Ceramic Society, 2015, 43(10), 1483 (in Chinese).
金南国, 徐亦斌, 付传清, 等. 硅酸盐学报, 2015, 43(10), 1483.
34 Ye H, Jin X, Fu C, et al. Construction and Building Materials, 2016, 112, 457.
35 Jiao J T, Ye Y H, Yang R H, et al. Journal of Beijing University of Technology, 2017, 43(12), 1893 (in Chinese).
焦俊婷, 叶英华, 杨荣华, 等. 北京工业大学学报, 2017, 43(12), 1893.
36 Kobayashi K, Rokugo K. Construction and Building Materials, 2013, 39, 139.
37 Fu C, Jin N, Ye H, et al. Corrosion Science, 2017, 117, 11.
38 Ye H, Fu C, Jin N, et al. Construction and Building Materials, 2018, 162, 286.
39 Jin W L, Wang Y. Journal of Zhejiang University (Engineering Science), 2014, 48(2), 221 (in Chinese).
金伟良, 王毅. 浙江大学学报(工学版), 2014, 48(2), 221.
40 Zhang Y T, Li Z D, Li Q Q. Journal of Hubei University of Technology, 2017, 32(5), 30 (in Chinese).
张宇天, 李泽栋, 李权权. 湖北工业大学学报, 2017, 32(5), 30.
41 Dong J, Zhao Y, Wang K, et al. Construction and Building Materials, 2017, 151, 208.
42 Zhang H, Zhao Y. Construction and Building Materials, 2016, 128, 96.
43 Berrocal C G, Löfgren I, Lundgren K, et al. Corrosion Science, 2015, 98, 128.
44 Berrocal C G, Löfgren I, Lundgren K. Engineering Structures, 2018, 163, 409.
45 Zhu W, François R. Construction and Building Materials, 2014, 51, 461.
46 Zhu W, François R, Coronelli D, et al. Engineering Structures, 2013, 56, 544.
47 Vidal T, Castel A, François R. Cement and Concrete Research, 2007, 37(11), 1551.
48 Yu L, François R, Dang V H, et al. Cement and Concrete Research, 2015, 67, 246.
49 Zhu W, François R, Fang Q, et al. Cement and Concrete Composites, 2016, 71, 144.
50 Dang V H, François R. Engineering Structures, 2013, 48, 558.
51 Zhu W, François R, Zhang C, et al. Cement and Concrete Research, 2018, 103, 66.
52 Yu L, François R, Dang V H, et al. Engineering Structures, 2015, 96, 30.
53 Cheng A, Huang R, Wu J K, et al. Materials Chemistry and Physics, 2005, 93(2), 404.
54 Jie S, Yin S P, Fei W, et al. Construction and Building Materials, 2017, 131, 713.
55 Yin S P, Na M W, Yu Y I, et al. Construction and Building Materials, 2017, 132, 251.
56 Liu Y, Jiang N, Deng Y, et al. Construction and Building Materials, 2016, 117, 302.
57 Liu Y, Jiang N, Deng Y. Journal of Highway and Transportation Research and Development, 2014, 31(10), 65 (in Chinese).
刘扬, 江楠, 邓扬. 公路交通科技, 2014, 31(10), 65.
58 Hou C C, Han L H, Wang Q L, et al. Thin-Walled Structures, 2016, 107, 182.
59 Chen S F, Liao W D, Zheng M L. Journal of Wuhan University of Technology, 2005, 27(8), 31 (in Chinese).
陈拴发, 廖卫东, 郑木莲. 武汉理工大学学报, 2005, 27(8), 31.
60 Guan B W, Yang T, Wu J Y, et al. Journlal of Building Materials, 2018(2), 304 (in Chinese).
关博文, 杨涛, 吴佳育, 等. 建筑材料学报, 2018(2), 304.
61 Su L W, Cai J, Liu P G, et al. Journal of South China University of Technology (Natural Science Edition), 2017, 45(5), 97 (in Chinese).
苏林王, 蔡健, 刘培鸽, 等. 华南理工大学学报(自然科学版), 2017, 45(5), 97.
62 Zou B, Zhan S L. Journal of the Chinese Ceramic Society, 2017, 36(8), 2519 (in Chinese).
邹斌, 詹树林. 硅酸盐通报, 2017, 36(8), 2519.
63 Yang S Y, Song X B, Jia H X, et al. Construction and Building Mate-rials, 2016, 121, 319.
64 Ma G, Li H, Hwang H J. Soil Dynamics and Earthquake Engineering, 2018, 106, 90.
[1] 黄海亮, 陈跃良, 张勇, 卞贵学, 王晨光, 吴省均. 飞机多金属耦合在溶液状态与大气状态下的腐蚀行为对比及当量折算研究[J]. 材料导报, 2020, 34(4): 4118-4125.
[2] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[3] 贾卫平, 吴蒙华, 贾振元, 董桂馥, 李晓鹏, 周绍安. 超声功率对多场耦合作用下脉冲电沉积Ni-ZrO2纳米复合镀层性能的影响[J]. 材料导报, 2020, 34(2): 2017-2022.
[4] 谢振康, 金伟良, 毛江鸿, 张军, 樊玮洁, 夏晋. 双向电迁移后混凝土内钢筋氢含量变化及影响[J]. 材料导报, 2020, 34(2): 2039-2045.
[5] 崔巍, 宋日悬, 肖忠民, 冯子明, 冷德成, 董康兴, 张强, 杨志军. X80油气管道焊缝双裂纹干涉效应多场耦合数值模拟方法[J]. 材料导报, 2020, 34(2): 2131-2136.
[6] 何欢, 杨荣俊, 文俊强, 唐芮枫, 王子明. 车桥耦合扰动对硫铝酸盐水泥混凝土修补材料性能的影响[J]. 材料导报, 2019, 33(Z2): 288-292.
[7] 王朝阳, 周全, 杨鸥, 霍静思, 王海涛. 钢筋锈蚀率对钢筋与混凝土黏结性能的影响[J]. 材料导报, 2019, 33(Z2): 309-316.
[8] 陈昌, 杨绿峰, 余波. 海洋潮汐区混凝土表面氯离子浓度的时变规律及多因素模型[J]. 材料导报, 2019, 33(Z2): 321-326.
[9] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[10] 王坤宇, 冯运莉, 柳昆. 纳米复相永磁材料的研究进展[J]. 材料导报, 2019, 33(z1): 116-121.
[11] 兰明章, 聂松, 王剑锋, 张巧伟, 陈智丰. 古建筑修复用石灰基砂浆的研究进展[J]. 材料导报, 2019, 33(9): 1512-1516.
[12] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[13] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[14] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[15] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed