Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 1036-1041    https://doi.org/10.11896/cldb.201906023
  金属与金属基复合材料 |
考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法
崔巍, 张煜杭, 张强, 冯子明
东北石油大学机械科学与工程学院,大庆 163318
A Fluid-solid-magnetic Coupling Method for the Crack Growth in Pipe Welds Considering the Fluid Permeation Pressure
CUI Wei, ZHANG Yuhang, ZHANG Qiang, FENG Ziming
College of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318
下载:  全 文 ( PDF ) ( 2931KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为实现利用漏磁法检测在役管道焊缝内裂纹动态扩展问题,本研究提出一种考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法。通过建立管道焊缝内裂纹扩展的流固磁多物理场模型,来构建流固磁多场耦合方程,并进行管道焊缝内裂纹扩展计算,从而实现管道焊缝内裂纹周围计算域网格重构与管道焊缝内裂纹扩展进程中的漏磁场分析。结果表明,流体渗透压力加速了内裂纹扩展进程。与不考虑流体渗透压力相比,考虑流体渗透压力的管道焊缝受到更严重的威胁。同时,考虑流体渗透压力施加的流固磁多场耦合方法更符合工程实际情况。考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法能较准确地表征在役管道焊缝内裂纹的扩展程度,判断管道焊缝损伤的危险等级,解决流固磁多场耦合作用下管道焊缝内裂纹扩展表征与评价问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔巍
张煜杭
张强
冯子明
关键词:  流体渗透压力  流固磁耦合  管道焊缝  内裂纹扩展  漏磁检测    
Abstract: Aiming at detecting the dynamic crack growth in the weld of the in-service pipeline by magnetic flux leakage method, a fluid-solid-magnetic coupling method considering the fluid permeation pressure was proposed. Through establishing the fluid-solid-magnetic field model in pipeline weld, the coupling equation of fluid-solid magnetic multi-field could be constructed, and the crack propagation in pipeline weld could be calculated, which contribute to the mesh reconstruction around the cracks and the analysis of the leakage magnetic field in the process of crack propagation in the pipeline weld. The results indicated that the the process of internal crack growth was accelerated by the fluid osmotic pressure. The pipe welds considering the fluid permeation pressure were threatened by more serious danger than that without the fluid permeation pressure. Meanwhile, the fluid-solid-magnetic multi-field coupling method considering the fluid permeation pressure was more suitable for the practical enginee-ring, which could accurately characterize the degree of the crack growth in pipe welds, judge the dangerous grade of the weld damage in pipelines. And it has provided a more effective way for characterization and evaluation of the crack growth in pipe welds under fluid-solid magnetic multi-field coupling condition.
Key words:  fluid penetration pressure    fluid-solid-magnetic multifield coupling    pipe weld    internal crack growth    magnetic flux leakage detection
                    发布日期:  2019-04-03
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51607035;11502051;51774091;51674090);黑龙江省普通本科高等学校青年创新人才(UNPYSCT-2018046);中国博士后科学基金(2018M641804);黑龙江省博士后科研启动金(LBH-Q18029)
作者简介:  崔巍,副教授,2013年6月毕业于东北石油大学,获得工学博士学位。张煜杭,在读硕士研究生,2017年毕业于东北石油大学,化工过程机械学士学位。张强,副教授,2011年6月毕业于东北石油大学,获工学博士位。
引用本文:    
崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
CUI Wei, ZHANG Yuhang, ZHANG Qiang, FENG Ziming. A Fluid-solid-magnetic Coupling Method for the Crack Growth in Pipe Welds Considering the Fluid Permeation Pressure. Materials Reports, 2019, 33(6): 1036-1041.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906023  或          http://www.mater-rep.com/CN/Y2019/V33/I6/1036
1 Cui W, Wang K, Zhang Q, et al. Tehnicki Vjesnik-Technical Gazette,2017,24(6),1969.
2 Li C C, Dong L H, Wang H D, et al. Materials Review A:Review Papers,2015,29(6),107(in Chinese).
李冲冲, 董丽虹, 王海斗, 等. 材料导报:综述篇,2015,29(6),107.
3 Du Y, Ma L, Zheng J Y, et al. Journal of Zhejiang University(Enginee-ring Science),2017,51(3),429(in Chinese).
杜洋,马利,郑津洋, 等. 浙江大学学报(工学版),2017,51(3),429.
4 Feng W M, Song L, Xiao G Y. Engineering Journal of Wuhan University,2009,42(2),264(in Chinese).
冯卫民, 宋立, 肖光宇. 武汉大学学报(工学版),2009,42(2),264.
5 Aursand E, Dumoulin S, Hammer M, et al. Engineering Structures,2016,123(11),192.
6 Rachid F B F, Mattos H S C. International Journal for Numerical Met-hods in Fluids,2015,28(2),337.
7 Nordhagen H O, Kragset S, Berstad T, et al. Computers & Structures,2012,94-95(1),13.
8 Talemi R H, Brown S, Martynov S, et al. International Journal of Greenhouse Gas Control,2016,54(2),702.
9 Ahn J S, Woo K S. Mechanics Research Communications,2015,66(6),60.
[1] 崔巍, 王珂, 姜民政, 马春阳, 冯子明, 冷建成. 管道焊缝裂纹扩展的流固磁耦合表征[J]. 材料导报, 2018, 32(16): 2852-2858.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed