Please wait a minute...
材料导报  2020, Vol. 34 Issue (3): 3116-3125    https://doi.org/10.11896/cldb.18100230
  无机非金属及其复合材料 |
锈蚀钢筋与混凝土粘结性能研究综述
孙杨,乔国富
哈尔滨工业大学土木工程学院,哈尔滨 150090
Research on the Bond Properties Between Corroded Reinforcing Steel Bar and Concrete: a Review
SUN Yang,QIAO Guofu
Department of Civil Engineering,Harbin Institute of Technology,Harbin 150090,China
下载:  全 文 ( PDF ) ( 10616KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钢筋与混凝土之间能够协同工作的主要原因之一是两者间具有良好的粘结性能,但钢筋混凝土结构在服役过程中,侵蚀性介质会进入混凝土中引起钢筋的锈蚀,造成钢混构件粘结性能退化,进而影响混凝土结构的承载能力及服役寿命。因此,通过试验角度科学地认识钢筋锈蚀作用下钢筋混凝土之间粘结性能的变化规律,对于钢混结构的先期设计及服役期间构件的寿命预测都有着极其重要的意义。对于锈蚀钢筋与混凝土之间的粘结性能研究主要采用试验的方式,如梁式试验、中心拉拔试验及偏心拉拔试验等,通过相关的试验手段,对锈蚀钢筋混凝土构件的粘结特性(主要包括粘结强度、粘结刚度、粘结滑移量和粘结力的分布)等进行了探究,并分析了影响锈蚀钢筋混凝土构件粘结性能的因素,主要包括箍筋、混凝土特性、钢筋特性、裂缝宽度、电加速腐蚀电流密度、腐蚀形态等,并在相关试验数据的基础上建立了钢筋混凝土的粘结滑移本构关系及锈蚀率与粘结强度的关系模型。国内外仅对锈蚀作用(不考虑外荷载作用)下的钢混构件的粘结性能开展了较为系统的研究,并取得了一定的成果。研究表明,在锈蚀率较低时钢筋混凝土构件的粘结性能有所提高,但是随着锈蚀率的继续增大,粘结强度会迅速衰减。实际工程中的钢混结构,如高铁轨道梁(杂散电流与高铁荷载)、跨海大桥(环境腐蚀与车载)等,不仅受到腐蚀的威胁,还受到外载荷等其他因素的影响。但目前对腐蚀因素与外荷载(如疲劳荷载等)作用下钢混构件的粘结性能的研究相对较少。外载荷势必会对钢混构件的粘结性能造成影响,加速粘结强度的衰减,但由于影响粘结性能的因素较多、试验操作困难等,仍然需要对钢混构件的粘结性能进行深入的研究,以推动混凝土耐久性的进一步发展。本文总结了国内外研究锈蚀钢筋混凝土构件粘结性能的试验方法,从锈蚀粘结特性、粘结滑移本构关系、腐蚀疲劳作用下的粘结性能等方面综述了国内外关于锈蚀钢筋混凝土构件的最新研究成果,分析了现阶段研究中的不足之处,以期为锈蚀钢筋混凝土粘结性能的未来研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙杨
乔国富
关键词:  粘结性能  锈蚀  腐蚀疲劳  钢筋混凝土  电加速腐蚀电流  本构关系    
Abstract: One of the main reasons why steel and concrete can work together is that good bond properties exist between them, but the bond properties of the reinforced concrete in service will degrade due to corrosion of reinforcement caused by entry of the aggressive agents, and the bea-ring capacity and the service life of structures will also be affected. So, it's of great significance to understand the change rule of the bond properties from the scientific perspective, which will contribute to the pre-design and service life prediction of reinforced concrete.
The experiments are mainly adopted to study the bond properties between corroded steel bar and concrete, like beam test, central pull-out test and eccentric pull-out test. Through related test methods, the bond properties are researched including bond strength, bond stiffness, bond slip and distribution of bond force. The factors affecting bond properties are analyzed like stirrups, properties of the concrete, properties of the steel, crack width, the magnitude of the applied current density and the corrosion morphology. The bond-slip constitutive laws and the relationship between the corrosion level and bond strength are established based on the statistics from the experiments. As a matter of fact, the systematic study at home and abroad has been carried out on the bond behaviour of corroded reinforced concrete members without considering external loads and good results have been achieved. The results show that the bond properties are improved when corrosion level is low, but the bond strength will rapidly decrease with the increase of the corrosion level.
In the practical engineering such as high-speed rail beams (stray current and high-speed rail loads) and sea-crossing bridges (environmental corrosion and vehicle loads), the reinforced concrete structures are not only threatened by the reinforcement corrosion but affected by the external loads as well. The existence of the external loads will undoubtfully have a further impact on the bond properties and accelerate the degradation of the bond strength. In fact, the bond properties between steel and concrete under the corrosion coupled with external loads like repeated loading are comparatively less researched due to too many factors and complex test operation, which need more in-depth research to promote the further development of concrete durability.
This article summarizes the experimental methods of investigating the bond behaviour and introduces bond properties, constitutive laws and bond fatigue properties of the reinforced concrete in the condition of corrosion. Finally, it points out the deficiencies of the current research results, aiming at providing some valuable ideas for the further study into the bond behaviour of the corroded reinforced concrete.
Key words:  bond properties    corrosion    corrosion fatigue    reinforced concrete    magnitude of the applied current    constitutive laws
                    发布日期:  2020-01-03
ZTFLH:  TU528  
基金资助: 国家自然科学基金面上项目(51578190;51378156)
通讯作者:  qgf_forever@hit.edu.cn   
作者简介:  孙杨,2016年7月毕业于武汉理工大学土木工程专业,获得学士学位。现为哈尔滨工业大学土木工程学院硕士研究生,在乔国富教授的指导下进行研究。目前主要的研究领域为混凝土耐久性;乔国富,哈尔滨工业大学土木工程学院教授、博士研究生导师。1998年9月~2004年7月毕业于哈尔滨工业大学材料科学与工程学院材料学专业,获得学士和硕士学位;2008年11月毕业于哈尔滨工业大学土木工程学院工程力学专业,获博士学位;2009年1月~2011年12月在哈尔滨工业大学土木工程博士后流动站从事研究工作。主要从事材料腐蚀与防腐、材料耐久性、结构健康监测与控制、智能材料与结构等的研究工作。获黑龙江省技术发明二等奖一项,国家发明专利12项。发表SCI期刊论文40余篇。
引用本文:    
孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
SUN Yang,QIAO Guofu. Research on the Bond Properties Between Corroded Reinforcing Steel Bar and Concrete: a Review. Materials Reports, 2020, 34(3): 3116-3125.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100230  或          http://www.mater-rep.com/CN/Y2020/V34/I3/3116
1 Shen P. Concrete structure design principle (the fourth edition), Higher Education Press, China, 2016 (in Chinese).
沈浦生. 混凝土结构设计原理(第四版), 高等教育出版社, 2016.
2 Angst U, Elsener B, Larsen C K, et al. Cement and Concrete Research, 2009, 39(12), 1122.
3 Steffens A, Dinkler D, Ahrens H. Cement and Concrete Research, 2002, 32(6), 935.
4 Gerengi H, Kocak Y, Jazdzewska A, et al. Construction and Building Materials, 2013, 49, 471.
5 Castel A, François R, Arliguie G. Materials and Structures, 2000, 33(9), 539.
6 Rodriguez J, Ortega L M, Casal J. Construction and Building Materials, 1997, 11(4), 239.
7 El Maaddawy T, Soudki K, Topper T. ACI Structural Journal, 2005, 102(5), 649.
8 Mangat P S, Elgarf M S. Structural Journal, 1999, 96(1), 149.
9 Al-Hammoud R, Soudki K, Topper T H. Cement and Concrete Compo-sites, 2010, 32(3), 194.
10 Lin H, Zhao Y. Construction and Building Materials, 2016, 118, 127.
11 Zhu W, Dai J, Poon C. Construction and Building Materials, 2018, 187, 1267.
12 Zhang W, Chen H, Gu X. Magazine of Concrete Research, 2015, 68(7), 364.
13 Hong X J, Zhao M. Journal of Tongji University: Natural Science Edition, 2002, 30(7), 792 (in Chinese).
洪小健, 赵鸣. 同济大学学报: 自然科学版, 2002, 30(7), 792.
14 MOHURD.GB50152-2012, Standard for test method of concrete structures, China Architecture & Building Press, China,2012 (in Chinese).
中华人民共和国住房和城乡建设部.GB50152-2012, 混凝土结构试验方法标准.,中国建筑工业出版社,2012.
15 Auyeung Y, Balaguru P, Chung L. Materials Journal, 2000, 97(2), 214.
16 Zandi Hanjari K, Coronelli D, Lundgren K. Magazine of Concrete Research, 2011, 63(12), 953.
17 Yalciner H, Eren O, Sensoy S. Cement and Concrete Research, 2012, 42(5), 643.
18 Yalciner H, Marar K. Journal of Materials in Civil Engineering, 2017, 29(7), 5017002.
19 Shi H S, Guo X L, Zhang H. Cement Engineering, 2009, 2009(2), 79 (in Chinese).
施惠生, 郭晓潞, 张贺. 水泥工程, 2009, 2009(2), 79.
20 Wu Y, Lyu H, Zhou S, et al. Construction and Building Materials, 2016, 119, 89.
21 Cairns J, Du Y, Law D. Magazine of Concrete Research, 2006, 58(4), 221.
22 He H N, Yang M M, Gong J X. Journal of Water Resources and Architectural Engineering, 2016, 14(4), 25 (in Chinese).
何化南, 杨嫚嫚, 贡金鑫. 水利与建筑工程学报, 2016, 14(4), 25.
23 Yuan Y S, Yu S, Jia F P. Industrial Construction, 1999, 29(11), 47 (in Chinese).
袁迎曙, 余索, 贾福萍. 工业建筑, 1999, 29(11), 47.
24 Ma Y, Guo Z, Wang L, et al. Construction and Building Materials, 2017, 152, 240.
25 Xu Y D, Du K, Zou Y S, et al. New Building Materials, 2017, 44(8), 111 (in Chinese).
徐亦冬, 杜坤, 邹毅松,等. 新型建筑材料, 2017, 44(8), 111.
26 Lundgren K. Magazine of Concrete Research, 2007, 59(6), 447.
27 Fang C, Lundgren K, Chen L, et al. Cement and Concrete Research, 2004, 34(11), 2159.
28 Fang C, Lundgren K, Plos M, et al. Cement and Concrete Research, 2006, 36(10), 1931.
29 Law D W, Tang D, Molyneaux T K, et al. Materials and Structures, 2011, 44(7), 1287.
30 Tondolo F. Construction and Building Materials, 2015, 93, 926.
31 Zhou H J, Liang X B, Zhang X L, et al. Construction and Building Materials, 2017, 138, 56.
32 Zhou H, Lu J, Xv X, et al. Construction and Building Materials, 2015, 93, 257.
33 Vidal T, Castel A, Francois R. Cement and Concrete Research, 2004, 34(1), 165.
34 Tang D, Molyneaux T K, Law D W, et al. ACI Materials Journal, 2011, 108(1), 29.
35 Zhou H J, Zhou Y F, Xu Y N, et al. International Journal of Corrosion, DOI.org/10.1155/2018/5309243.
36 Zhang W P, Zhang Y. Building Strucuture, 2002, 32(1), 31 (in Chinese).
张伟平, 张誉. 建筑结构, 2002, 32(1), 31.
37 Lin H, Zhao Y, Ožbolt J, et al. Engineering Structures, 2017, 152, 506.
38 Alonso C, Andrade C, Rodriguez J, et al. Materials and Structures, 1998, 31(7), 435.
39 El-Maaddawy T A, Soudki K A. Journal of Materials in Civil Enginee-ring, 2003, 15(1), 41.
40 Tahershamsi M, Fernandez I, Lundgren K, et al. Structure and Infrastructure Engineering, 2017, 13(10), 1294.
41 Yuan Y, Ji Y, Shah S P. ACI Structural Journal, 2007, 104(3), 344.
42 Nguyen C V, Lambert P. Structure and Infrastructure Engineering, 2018, 14(11), 1535.
43 Mancini G, Tondolo F. Structural Concrete, 2014, 15(3), 408.
44 Zheng X Y, Wu S X. China Civil Engineering Journal, 2006, 39(6), 42 (in Chinese).
郑晓燕, 吴胜兴. 土木工程学报, 2006, 39(6), 42.
45 Liang Y, Luo X Y, Xiao X Q, et al. Industrial Construction, 2012, 42(10), 95 (in Chinese).
梁岩, 罗小勇, 肖小琼, 等. 工业建筑, 2012, 42(10), 95.
46 Lin H, Zhao Y, Ožbolt J, et al. Engineering Structures, 2017, 140, 390.
47 Zhao Y, Lin H, Wu K, et al. Construction and Building Materials, 2013, 48, 348.
48 Al-Sulaimani G J, Kaleemullah M, Basunbul I A. Structural Journal, 1990, 87(2), 220.
49 Pantazopoulou S J, Papoulia K D. Journal of Engineering Mechanics, 2001, 127(4), 342.
50 Zhao Yuxi, Jin Weiliang. Journal of Building Structures, 2002, 23(1), 32 (in Chinese).
赵羽习, 金伟良. 建筑结构学报, 2002, 23(1), 32.
51 Zhang Y, Lu Z. Transactions of Tianjin University, 2013, 19(5), 366.
52 Bhargava K, Ghosh A K, Mori Y, et al. Journal of Structural Enginee-ring, 2008, 134(2), 221.
53 Li C Q, Yang S T, Saafi M. Journal of Structural Engineering, 2014, 140(12), 4014092.
54 Lee H, Noguchi T, Tomosawa F. Cement and Concrete Research, 2002, 32(8), 1313.
55 Sajedi S, Huang Q. Engineering Structures, 2015, 99, 120.
56 Chung L, Jay Kim J, Yi S. Cement and Concrete Composites, 2008, 30(7), 603.
57 Yin S, Hu C, Lyu H. Composite Interfaces, 2019, 26(6), 551.
58 Cabrera J G. Cement and Concrete Composites, 1996, 18(1), 47.
59 Chen C H, Tan D Y, Zeng Y, et al. Journal of Chongqing University, 2016, 39(1), 79 (in Chinese).
陈朝晖, 谭东阳, 曾宇, 等. 重庆大学学报, 2016, 39(1), 79.
60 Plizzari G A, Deldossi M A, Magazine of Concrete Research, 1998, 50(2), 161.
61 CEB-FIP. Fib Model Code for Concrete Structures 2010, Ernst & Sohn, Germany, 2010.
62 MOHURD.GB50010-2010, Code for design of concrete structures,China Architecture & Building Press, China,2010 (in Chinese).
中华人民共和国住房和城乡建设部.GB50010-2010,混凝土结构设计规范,中国建筑工业出版社,2010.
63 Jiang C, Wu Y, Dai M. Construction and Building Materials, 2018, 158, 1073.
64 Blomfors M, Zandi K, Lundgren K, et al. Engineering Structures, 2018, 156, 394.
65 Dai K S, Yuan Y S, Yang G. Concrete, 2004(11), 45 (in Chinese).
戴靠山, 袁迎曙, 杨广. 混凝土, 2004(11), 45.
66 Giordano L, Mancini G, Tondolo F. Modelling of Corroding Concrete Structures, Springer, Dordrecht, 2011.
67 Giordano L, Mancini G, Tondolo F. Journal of Advanced Concrete Technology, 2011, 9(3), 277.
68 Oh B H, Kim S H. Journal of Structural Engineering, 2007, 133(2), 216.
[1] 秦晓川,刘加平,石亮,穆松,蔡景顺,吴贞杰,周霄骋,刘建忠. 荷载与氯离子耦合作用下混凝土耐久性试验方法与装置的研究进展[J]. 材料导报, 2020, 34(3): 3106-3115.
[2] 王朝阳, 周全, 杨鸥, 霍静思, 王海涛. 钢筋锈蚀率对钢筋与混凝土黏结性能的影响[J]. 材料导报, 2019, 33(Z2): 309-316.
[3] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[4] 陈俊, 张白, 杨鸥, 龙士国, 许福, 杨才千. 黏结长度对锈蚀钢筋与混凝土间黏结性能的影响[J]. 材料导报, 2019, 33(22): 3744-3751.
[5] 王潇舷, 金祖权, 姜玉丹, 陈凡秀. 基于DIC与应变测试的混凝土中钢筋锈胀应力分析[J]. 材料导报, 2019, 33(16): 2690-2696.
[6] 陈跃良, 吴省均, 卞贵学, 张勇, 王安东, 黄海亮, 张柱柱. 基于Gerber模型的DFR腐蚀折算系数及其试验测定[J]. 材料导报, 2019, 33(16): 2793-2798.
[7] 辛景舟, 周建庭, 周应新, 苏欣, 冉文兴. 考虑材料劣化的钢筋混凝土压弯构件承载力演化试验研究[J]. 材料导报, 2019, 33(14): 2362-2369.
[8] 武焕春, 薛飞, 李成涛, 方可伟, 杨滨, 宋西平. 核电主管道不锈钢在高温高压水环境下的疲劳裂纹萌生行为[J]. 《材料导报》期刊社, 2018, 32(3): 373-377.
[9] 李哲, 金祖权, 邵爽爽, 徐翔波. 海洋环境下混凝土中钢筋锈蚀机理及监测技术概述[J]. 材料导报, 2018, 32(23): 4170-4181.
[10] 郑山锁, 裴培, 张艺欣, 董立国, 郑捷, 董方园. 钢筋混凝土粘结滑移研究综述[J]. 材料导报, 2018, 32(23): 4182-4191.
[11] 刘梦梅, 韩 森, 潘 俊, 李 微, 任万艳. 水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J]. 《材料导报》期刊社, 2018, 32(10): 1716-1720.
[12] 袁飞洋, 万强, 张灿阳, 李旭. 磁流变弹性体力磁耦合本构关系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 1-12.
[13] 王月敏, 闫相桥, 李垚, 王滨生. 基于纳米压痕技术的本构关系反演分析进展*[J]. 《材料导报》期刊社, 2017, 31(17): 1-5.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed