Please wait a minute...
材料导报  2019, Vol. 33 Issue (22): 3744-3751    https://doi.org/10.11896/cldb.18110090
  无机非金属及其复合材料 |
黏结长度对锈蚀钢筋与混凝土间黏结性能的影响
陈俊1,张白1,2,,杨鸥3,龙士国1,许福1,杨才千1
1 湘潭大学土木工程与力学学院,湘潭 411105
2 东南大学土木工程学院,南京 211189
3 湖南大学土木工程学院,长沙 410082
Impact of Anchorage Length on Bond Performance Between Corroded Reinforcing Steel Bars and Concrete
CHEN Jun1, ZHANG Bai1, 2, YANG Ou3, LONG Shiguo1, XU Fu1, YANG Caiqian1
1 College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105
2 School of Civil Engineering, Southeast University, Nanjing 211189
3 College of Civil Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 3517KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为研究黏结长度(L=2d、5d,d为钢筋直径)对锈蚀钢筋与混凝土间黏结性能的影响,通过电化学加速锈蚀方法,获得六组不同钢筋锈蚀率(0.0%、1.0%、2.0%、5.0%、8.0%、10.0%)的中心拉拔试件,并使用裂缝测宽仪记录试件锈蚀后的最大裂缝宽度。通过中心拔出试验,分析了在黏结长度、锈蚀率等影响因子的作用下钢筋与混凝土间黏结性能的退化规律。结果表明,随着锈蚀率的增加,黏结长度较长的试件(L=5d)锈胀裂纹出现越早,且最大锈胀裂纹越宽。各试件的黏结强度、黏结刚度均随混凝土的劣化及锈蚀率的增加呈现先增长后逐渐下降的趋势,黏结能量则随锈蚀率的增加而逐渐减小。相比于L=2d的试件,L=5d试件的黏结强度、黏结刚度更低。基于试验结果,建立了最大锈胀裂缝宽度、黏结强度与锈蚀率的关系式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈俊
张白
杨鸥
龙士国
许福
杨才千
关键词:  黏结长度  锈蚀钢筋  混凝土  黏结性能  锈胀裂纹    
Abstract: Aiming at digging out the impact of anchorage length (L) of steel bar on bond performance between corroded reinforcing steel bars and concrete, two kinds of cube specimens with different anchorage length (L=2d and L=5d, d is the diameter of rebar) were cast. Six groups of pull-out specimens with rebar mass loss percentage of 0.0%, 1.0%, 2.0%, 5.0%, 8.0%, 10.0% were prepared by means of current accele-rated method, and the maximum width of corrosion-induced cracking on these specimens was measured by fracture width gauge. According to the pull-out tests, the degradation laws of bonding performance between the corroded reinforcing steel bar and concrete were analyzed, conside-ring the influence of anchorage length and reinforcement corrosion rate. The experimental results showed that the expansive cracks in the specimen with longer anchorage length appeared earlier and the maximum crack width became larger because of the increased reinforcement corrosion level. The deterioration of concrete and the increase of corrosion rate would bring about an increase and then gradual decrease in bonding strength and initial bonding stiffness of specimens with diverse anchorage length. Additionally, the growing mass loss of rebars also leaded to the decline of bonding energy. The specimens with longer anchorage length (L=5d) held lower bond strength and bond stiffness than the specimens with shorter anchorage length (L=2d). Finally, an empirical model for predicting corrosion-induced cracking width based on reinforcement corrosion level was proposed, and the relationship between bond strength and corrosion level based on the tested results of previous studies was established, which can evaluate the residual bond strength with different corrosion levels.
Key words:  anchorage length    corroded steel bar    concrete    bond performance    corrosion-induced cracks
               出版日期:  2019-11-25      发布日期:  2019-09-16
ZTFLH:  TU375.4  
基金资助: 国家自然科学基金(51578229);湖南省科技重大项目(2017SK1010);湖南省创新技术投资项目(2018GK5028)
作者简介:  陈俊,湘潭大学,副教授。2016年6月毕业于湖南大学,获工学博士学位。主要从事结构的抗震性能、高温性能以及抗连续倒塌能力的研究。
张白,2018年6月毕业于湘潭大学,获得工学硕士学位。于2018年9月在东南大学土木工程学院攻读博士学位。主要从事结构抗火及耐久性研究。
引用本文:    
陈俊, 张白, 杨鸥, 龙士国, 许福, 杨才千. 黏结长度对锈蚀钢筋与混凝土间黏结性能的影响[J]. 材料导报, 2019, 33(22): 3744-3751.
CHEN Jun, ZHANG Bai, YANG Ou, LONG Shiguo, XU Fu, YANG Caiqian. Impact of Anchorage Length on Bond Performance Between Corroded Reinforcing Steel Bars and Concrete. Materials Reports, 2019, 33(22): 3744-3751.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110090  或          http://www.mater-rep.com/CN/Y2019/V33/I22/3744
[1] Chen J, Zhang B, Yang O, et al. Engineering Mechanics, 2018, 35(10), 92(in Chinese).陈俊, 张白, 杨鸥, 等. 工程力学, 2018, 35(10), 92.
[2] Tondolo F. Construction & Building Materials, 2015, 93(9), 926.
[3] Zhao Y, Lin H, Wu K, et al. Construction & Building Materials, 2013, 48(11), 348.
[4] Zhou H J, Liang X B, Zhang X L, et al. Construction & Building Mate-rials, 2017, 138, 56.
[5] Wu F, Xu Y D. Materials Review A: Review Papers, 2016, 30(2), 101(in Chinese).吴凡, 徐亦冬. 材料导报:综述篇, 2016, 30(2), 101.
[6] Zhou H, Liang X, Wang Z, et al. Structural Engineering & Mechanics, 2017, 63(6), 725.
[7] Wu Y Z, Lv H L, Zhou S C, et al. Construction & Building Materials, 2016, 119(8), 89.
[8] Law D W. Construction & Building Materials, 2017, 155(8), 550.
[9] Fang C, Lundgren K, Plos M, et al. Cement & Concrete Research, 2006, 36(10), 1931.
[10] Chen Z H, Tan D Y, Zeng Y, et al. Journal of Chongqing University, 2016, 39(1), 79(in Chinese).陈朝晖, 谭东阳, 曾宇, 等. 重庆大学学报, 2016, 39(1), 79.
[11] Ma Y, Guo Z, Wang L, et al. Construction & Building Materials, 2017, 152(10), 240.
[12] Choi Y S, Yi S T, Kim M Y, et al. Construction & Building Materials, 2014, 54(3), 180.
[13] Cao F B, Li J X, Wang C X, et al. Journal of Building Structures, 2016, 37(S2), 143(in Chinese).曹芙波, 李骏骁, 王晨霞, 等. 建筑结构学报, 2016, 37(S2), 143.
[14] Wang C X, Wang Y, Li J H, et al. Journal of Civil, Architectural & Environmental Engineering, 2016, 38(1), 46(in Chinese).王晨霞, 王宇, 李敬红, 等. 土木建筑与环境工程, 2016, 38(1), 46.
[15] Zhang J, Ma Y, Wang L. Iabse Symposium Report, 2010, 97(1), 1.
[16] Zhang B, Chen J, Yang O, et al. Journal of Harbin Institute of Technology, 2018, 50(12), 89(in Chinese).张白, 陈俊, 杨鸥, 等. 哈尔滨工业大学学报, 2018, 50(12), 89.
[17] Jiang J Q, Li J, Jin W L. Higher concrete struture theory, China Construction Industry Press, China,2007(in Chinese).江见鲸, 李杰, 金伟良. 高等混凝土结构理论, 中国建筑工业出版社, 2007.
[18] Lan C, Kim J H J, Yi S T. Cement & Concrete Composites, 2008, 30(7), 603.
[19] Mancini G, Tondolo F. Structural Concrete, 2015, 15(3), 408.
[20] Wang Z Y, Yang O, Hou J S. Journal of Harbin Institute of Technology, 2018, 50(8), 150(in Chinese).王朝阳, 杨鸥, 霍静思. 哈尔滨工业大学学报, 2018, 50(8), 150.
[21] Lin H, Zhao Y, Sun M. In: 4th International Conference on the Durability of Concrete Structures. USA, 2014, pp. 122.
[22] Fang C, Lundgren K, Chen L, et al. Cement & Concrete Research, 2004, 34(11), 2159.
[23] Xu G, Wei J, Wang Q. Journal of Basic Science and Engineering, 2009, 17(4), 549(in Chinese).徐港, 卫军, 王青. 应用基础与工程科学学报, 2009, 17(4), 549.
[24] Hou L J, Liu H, Xu S L, et al. Journal of Building Structures, 2017, 38(7), 146(in Chinese).侯利军, 刘泓, 徐世烺, 等. 建筑结构学报, 2017, 38(7), 146.
[25] Coccia S, Imperatore S, Rinaldi Z. Materials & Structures, 2016, 49(1-2), 537.
[26] Xiao J Z, Lei B. Journal of Building Structures, 2011, 32(1), 58(in Chinese).肖建庄, 雷斌. 建筑结构学报, 2011, 32(1), 58.
[27] Yalciner H, Eren O, Sensoy S. Cement & Concrete Research, 2012, 42(5), 643.
[1] 秦晓川,刘加平,石亮,穆松,蔡景顺,吴贞杰,周霄骋,刘建忠. 荷载与氯离子耦合作用下混凝土耐久性试验方法与装置的研究进展[J]. 材料导报, 2020, 34(2): 3106-3115.
[2] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(2): 3116-3125.
[3] 谢振康, 金伟良, 毛江鸿, 张军, 樊玮洁, 夏晋. 双向电迁移后混凝土内钢筋氢含量变化及影响[J]. 材料导报, 2020, 34(1): 2039-2045.
[4] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[5] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[6] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[7] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[8] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[9] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[10] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[11] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[12] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[13] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[14] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[15] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed