Please wait a minute...
材料导报  2019, Vol. 33 Issue (4): 634-638    https://doi.org/10.11896/cldb.201904013
  无机非金属及其复合材料 |
基于Weibull分布和残余应变的SCC疲劳损伤本构模型
万镇昂1,马昆林1,2,,龙广成1,2,谢友均1,2
1 中南大学土木工程学院,长沙 410075;
2 中南大学高速铁路建造技术国家工程实验室,长沙 410075
A Fatigue Damage Constitutive Model of SCC Based on Weibull Distribution and Residual Strain
WAN Zhen’ang1,MA Kunlin1,2,LONG Guangcheng1,2,XIE Youjun1,2
1 School of Civil Engineering, Central South University, Changsha 410075;
2 National Engineering Laboratory of High-speed Railway Construction Technology, Central South University, Changsha 410075
下载:  全 文 ( PDF ) ( 2370KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究CRTSⅢ型板式轨道充填层自密实混凝土(Self-compacting concrete,SCC)在不同服役环境下疲劳损伤的本构关系,采用Weibull分布函数并引入残余应变表征损伤度,建立了SCC疲劳损伤的本构模型,探讨了水和动荷载共同作用对SCC疲劳损伤的影响,同时采用MTS试验机对典型充填层SCC的抗压疲劳性能进行了测试和模型验证。结果表明,基于Weibull分布和残余应变的SCC疲劳损伤本构模型能够较好地表征典型充填层SCC在疲劳荷载作用下的性能演变,本构模型的拟合结果与试验结果的相关系数大于0.97,该模型能够较好地体现SCC的损伤随疲劳次数增加的变化。1×106次疲劳荷载后,动荷载作用下SCC极限抗压强度降低20.5%;相比较动荷载单独作用,在饱水条件下,1×106次疲劳试验后,SCC极限抗压强度降低6.7%;水-动荷载共同作用下SCC极限抗压强度降低27.2%。由此可知水和动荷载共同作用加剧了SCC的疲劳损伤。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万镇昂
马昆林
龙广成
谢友均
关键词:  本构模型  自密实混凝土  Weibull分布  残余应变  水-动荷载耦合    
Abstract: For the sake of investigating the fatigue damage of self-compacting concrete(SCC) used in CRTSⅢ slab track filling layer under diverse ser-vice environment, the Weibull distribution function was employed and the residual strain was introduced to characterize the damage degree, and the SCC fatigue damage constitutive model was established. The effects of water and dynamic load on the fatigue damage of SCC was discussed, and the compression fatigue performance of typical filling layer SCC was tested and verified by the MTS testing machine. Results indicated that the Weibull distribution and residual strain based SCC fatigue damage constitutive model could well characterize the performance evolution of typical filling layer SCC under fatigue load. The correlation coefficients between the fitted results of the constitutive model and the experimental results are larger than 0.97, which meant the model could well reflect the variation of SCC damage with the rising fatigue times. After 1×106 times fatigue load, the ultimate compressive strength of SCC decreased by 20.5% under dynamic load, compared with the single action of dynamic load, the ultimate compressive strength of SCC decreased by 6.7% under saturated water condition after 1×106 times fatigue load, the ultimate compressive strength of SCC decreased by 27.2% under the combined action of water-dynamic load. The combined action of water and dynamic load accelerated SCC damage under fatigue load.
Key words:  constitutive model    self-compacting concrete    Weibull distribution    residual strain    water-dynamic load coupling
               出版日期:  2019-02-25      发布日期:  2019-03-11
ZTFLH:  TU528  
基金资助: 国家重点研发计划项目(2017YFB1201204);国家自然科学基金(51678569;11790283;51678568)
作者简介:  万镇昂,中南大学土木工程学院硕士研究生,主要从事无砟轨道疲劳损伤领域的研究。马昆林,中南大学教授。2009年毕业于中南大学,获道路与铁道工程博士学位。主要从事无砟轨道、智能混凝土和高性能水泥基材料的研究。近年来主持和参加多项国家自然科学基金,发表学术论文70余篇,获省部级以上科研奖励3项,申报发明专利6项,主编教材2部。
引用本文:    
万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
WAN Zhen’ang, MA Kunlin, LONG Guangcheng, XIE Youjun. A Fatigue Damage Constitutive Model of SCC Based on Weibull Distribution and Residual Strain. Materials Reports, 2019, 33(4): 634-638.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201904013  或          http://www.mater-rep.com/CN/Y2019/V33/I4/634
1 Zheng J L, Luo S R, Wang G J, et al. Research and application of self-compacting concrete technology, Tsinghua University Press, China,2016(in Chinese).郑建岚,罗素蓉,王国杰,等.自密实混凝土技术的研究与应用,清华大学出版社,2016.2 Xie Y T, Corr D J, Chaouche M, et al. Cement and Concrete Research,2014,56,121.3 Aslani F, Nejadi S. Construction and Building Materials,2012,36(4),330.4 Huang J. Research on technique of SCC used in filling layer in high speed railway slab ballastless track. Master’s Thesis, Central South University, China,2011(in Chinese).黄健.高速铁路板式无砟轨道结构充填层自密实混凝土技术研究.硕士学位论文,中南大学,2011.5 He Y P. Study on fatigue property of the CRTSⅢ slab track. Master’s Thesis, Southwest Jiaotong University, China,2011(in Chinese).何燕平.CRTSⅢ型板式无砟轨道疲劳特性研究.硕士学位论文,西南交通大学,2011.6 Liu W, Rong H. Materials Review A: Review Papers,2011,25(10):134(in Chinese).刘巍,荣辉.材料导报:综述篇,2011,25(10),134.7 Li W T, Sun W, Jiang J Y. Journal of the Chinese Ceramic Society,2009,37(12),2142(in Chinese).李文婷,孙伟,蒋金洋.硅酸盐学报,2009,37(12),2142.8 Ganesan N, Raj J B, Shashikala A P. Construction and Building Mate-rials,2013,44,7.9 Korte S, Boel V,Corte W D, et al. Construction and Building Materials,2014,57,1.10 Younes T, Al-Mayah A,Topper T. Construction and Building Materials,2017,157,313.11 Zhu J S, Xiao R C, Song Y P. China Civil Engineering Journal,2005,38(6),104(in Chinese).朱劲松,肖汝诚,宋玉普.土木工程学报,2005,38(6),104.12 Zhao Z D. Studies on the fatigue property and cumulative damage of hydraulic concrete under the compressive fatigue load. Ph.D. Thesis, Kunming University of Science and Technology, China,2011(in Chinese).赵造东.水工混凝土受压疲劳性能及累积损伤研究.博士学位论文,昆明理工大学,2011.13 Yang R N. Research on static and fatigue damage of steel fiber reinforced concrete. Ph.D. Thesis, South China University of Technology, China,2013(in Chinese).杨润年.钢纤维混凝土静力损伤及疲劳损伤研究.博士学位论文,华南理工大学,2013.14 Wang R M, Zhao G F, Song Y P. China Civil Engineering Journal,1991,24(4),38(in Chinese).王瑞敏,赵国藩,宋玉普.土木工程学报,1991,24(4),38.15 Xiao J Z, Li H. China Civil Engineering Journal,2013,46(2),62(in Chinese).肖建庄,李宏.土木工程学报,2013,46(2),62.16 Chandrappa A K, Biligiri K P. Construction and Building Materials,2017,153,10.17 Kindrachuk V M, Thiele M, Unger J F. International Journal of Fatigue,2015,78,81.18 Liu G J, Yang Y Q. Materials Review B: Research Papers,2014,28(3),141(in Chinese).刘国军,杨永清.材料导报:研究篇,2014,28(3),141.19 Yun W C, Yong J K, Shin H C, et al. Cement and Concrete Research,2006,36(9),1595.20 Persson B. Cement and Concrete Research,2001,31(2),193.21 Long G C, Li N, Xue Y H, et al. Journal of the Chinese Ceramic Society,2016,44(8),1081(in Chinese).龙广成,李宁,薛逸骅.硅酸盐学报,2016,44(8),1081.22 Wu Z, Zhang C J. Chinese Journal of Rock Mechanics and Engineering,1996,15(1),55(in Chinese).吴政,张承娟.岩石力学与工程学报,1996,15(1),55.23 Fu Q, Xie Y J, Long G C, et al. Journal of Sichuan University(Engineering Science Edition),2014,46(4),53(in Chinese).傅强,谢友均,龙广成,等.四川大学学报(工程科学版),2014,46(4),53.24 Wei J, Li S L, Dong R Z, et al. Journal of Hunan University(Natural Sciences),2016,43(7),57(in Chinese).卫军,李松林,董荣珍,等.湖南大学学报(自然科学版),2016,43(7),57.
[1] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[2] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[3] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[4] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[5] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[6] 周蕊, 李璐璐, 谢东, 张建国, 吴孟丽. 基于修正Drucker-Prager Cap模型的金属粉末成形本构模型参数确定方法[J]. 材料导报, 2018, 32(6): 1020-1025.
[7] 江世永, 龚宏伟, 姚未来, 陶帅, 蔡涛. ECC材料力学性能与本构关系研究进展[J]. 材料导报, 2018, 32(23): 4192-4204.
[8] 陈渊, 蓝永庭, 张克实, 蔡敢为, 胡桂娟. AZ31镁合金微结构关联的孪生形核与长大统计分析[J]. 材料导报, 2018, 32(20): 3566-3572.
[9] 刘少飞, 屈银虎, 王崇楼, 王彦龙, 成小乐, 王柯. 金属和合金高温变形过程本构模型的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2241-2251.
[10] 余滨杉, 樊禹江, 王社良, 杨涛. 考虑加/卸载速率影响的Ti-Ni形状记忆合金简化本构模型[J]. 《材料导报》期刊社, 2017, 31(6): 153-160.
[11] 张文沛, 李欢欢, 胡志力, 秦训鹏. 车用轻量化铝合金材料本构关系研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 85-89.
[12] 唐徐,李落星,叶拓,李荣启,. 6013-T4铝合金不同温度下的动态流变应力及组织演变[J]. 材料导报编辑部, 2017, 31(10): 87-91.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed