Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 1020-1025    https://doi.org/10.11896/j.issn.1005-023X.2018.06.031
  计算模拟 |
基于修正Drucker-Prager Cap模型的金属粉末成形本构模型参数确定方法
周蕊1, 李璐璐2, 谢东2, 张建国2, 吴孟丽1
1 中国民航大学航空工程学院,天津 300300;
2 天津科技大学机械工程学院,天津 300222
A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model
ZHOU Rui1, LI Lulu2, XIE Dong2, ZHANG Jianguo2, WU Mengli1
1 School of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300;
2 School of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin 300222
下载:  全 文 ( PDF ) ( 1605KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对修正Drucker-Prager Cap模型参数复杂且难准确获取的问题,提出一种采用相对简单实验操作结合联合仿真反演优化确定模型参数的方法,用于金属粉末成形的数值模拟。首先通过实验分析与理论推导,确定重点反演优化参数,即偏心距参数R;采用联合仿真反演优化方法,借助ABAQUS有限元及二次开发平台与MATLAB优化算法,对参数R进行反演计算,进而完成相关硬化参数的确定;以金属粉末Distaloy AE为例,讨论参数R不同函数表达形式的反演结果对粉末压制成形过程数值模拟的影响。研究结果表明,偏心距参数R2及其关联的硬化参数比R1在压制力、脱模力、相对密度和残余应力数值模拟方面具有更高的准确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周蕊
李璐璐
谢东
张建国
吴孟丽
关键词:  金属粉末成形  本构模型参数  修正Drucker-Prager  Cap模型  反演优化    
Abstract: Aiming to provide alleviations for the problems of the modified Drucker-Prager Cap model including complexity and low accuracy of the obtained parameters, a combinational constitutive parameter determining method that involves both simple expe-riment and inverse optimization was proposed and applied to numerical simulation of metal powder compaction. First, the important inverse optimization parameter called the cap eccentricity parameter R was determined by the experimental analysis and theoretical derivation. Then, the simulation method using ABAQUS finite element platform and MATLAB optimization algorithm was implemented for inverse optimization of parameter R and calculation of the related hardening parameters. The metal powder Distaloy AE was used to discuss the influence of the inverse results of different R on the numerical simulation of powder compaction process. The results showed that the cap eccentricity parameter R2 and its associated hardening parameters were more accurate than R1 for the numerical simulation of the pressing force, ejection force, relative density and residual stresses.
Key words:  metal powder compaction    constitutive model parameters    modified Drucker-Prager Cap model    inverse optimization
               出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TF12  
基金资助: 国家青年科学基金(51505483); 天津市自然科学基金(15JCQNJC42900); 中国民航大学科研启动基金(2013QD13X); 中央高校基本科研业务费(3122013C012)
通讯作者:  吴孟丽, 1979年生,博士,副教授,主要研究方向为零件成形制造 E-mail:wuml2004@qq.com   
作者简介:  周蕊:女,1983年生,博士,讲师,主要研究方向为塑性成形理论及数值模拟研究 E-mail:reaterbutter@163.com
引用本文:    
周蕊, 李璐璐, 谢东, 张建国, 吴孟丽. 基于修正Drucker-Prager Cap模型的金属粉末成形本构模型参数确定方法[J]. 材料导报, 2018, 32(6): 1020-1025.
ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model. Materials Reports, 2018, 32(6): 1020-1025.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.031  或          http://www.mater-rep.com/CN/Y2018/V32/I6/1020
1 周照耀,李元元.金属粉末成形力学建模与计算机模拟[M].广州:华南理工大学出版社,2011:5.
2 董林峰.粉末金属成形过程计算机仿真与缺陷预测[M].北京:冶金工业出版社,2011:4.
3 Yazici B A, Kraft T, Riedel H. Finite element modeling of PM surface densification process[J].Powder Metallurgy,2008,51(3):211.
4 Kang C S,Lee S C,Tim K T,et al.Densification behavior of iron powder during cold stepped compaction[J].Materials Science and Engineering,2007,452-453:359.
5 Wang Deguang,Wu Yucheng,Jiao Minghua,et al.Finite element simulation of influence of different compacting processes on powder metallurgic products properties[J].Chinese Journal of Mechanical Engineering,2008,44(1):205 (in Chinese).
王德广,吴玉程,焦明华,等.不同压制工艺对粉末冶金制品性能影响的有限元模拟[J].机械工程学报,2008,44(1):205.
6 Biswas K. Comparison of various plasticity models for metal powder compaction processes[J].Journal of Materials Processing Technology,2005,16:107.
7 Rahman M M, Ariffin A K, Nor S S M. Development of a finite element model of metal powder compaction process at elevated tempe-rature[J].Applied Mathematical Modelling,2009,33:4031.
8 Andersson D C,Larsson P L,Cadario A,et al.On the influence from punch geometry on the stress distribution at powder compaction[J].Powder Technology,2010,202(1-3):78.
9 Diarra H,Mazel V,Boillon A,et al.Finite element modeling of powder compaction of cosmetic products:Comparison between simulated and experimental results[J].Powder Technology,2012,224:233.
10 Shin H,Kim J B,Kim S J,et al.A simulation-based determination of cap parameters of the modified Drucker-Prager cap model by consi-dering specimen barreling during conventional triaxial testing[J].Computational Materials Science,2015,100:31.
11 SIMULIA Inc.Abaqus 6.10 theory manual[M].Providence,USA:Software Corporation,2009:115.
12 Drucker D C,Prager W.Soil mechanics and plastic analysis or limit design[J].Quarterly Journal of Applied Mathematics,1952,10:157.
13 Chtourou H,Guillot M,Gakwaya A.Modeling of the metal powder compaction process using the cap model. Part Ⅰ.Experimental mate-rial characterization and validation[J].International Journal of Solids and Structures,2002,39(4):1059.
14 Zhang Baosheng,Jain Mukesh,Zhao Chenghao,et al.Experimental calibration of density-dependent modified Drucker-Prager/Cap model using an instrumented cubic die for powder compact[J].Powder Technology,2010,204:27.
15 Wu C Y,Hancock B C,Mills A,et al.Numerical and experimental investigation of capping mechanisms during pharmaceutical tablet compaction[J].Powder Technology,2008,181(2):121.
16 Brewin P R, Coube O, Doremus P, et al. Modelling of powder die compaction[M].London:Springer-Verlag,2010.
17 Tu Tingsheng,Lin Dawei.A comment on the Poisson’s ratio model of sintered metal powder materials[J].Metal Forming Technology,2001,19(2):4 (in Chinese).
屠挺生,林大为.金属粉末烧结泊松比模型的探讨[J].金属成形工艺,2001,19(2):4.
18 Coube O, Riedel H. Numerical simulation of metal powder die compaction with special consideration of cracking[J].Powder Metallurgy,2000,43(2):123.
19 Zhou Rui, Zhang Lianhong, He Baiyan, et al. Numerical simulation of residual stress field in green powder metallurgy compacts by modified Drucker-Prager Cap model[J].Transactions of Nonferrous Me-tals Society of China,2013,23:2374.
[1] 张昊, 胡强, 张少明, 盛艳伟, 赵新明, 贺会军. 水雾化法制备FeSiCr软磁合金粉末研究[J]. 材料导报, 2018, 32(20): 3590-3594.
[2] 李磊,程博闻,康卫民,马晓光,庄旭品. 静电溶液喷射Fe2O3/Al2O3超细纤维负载型光催化剂的制备及催化性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 207-212.
[3] 张春芝, 孔令亮, 李辉平. 镍添加对粉末冶金Al94.5Cu4Mg1.5耐腐蚀性能的提升作用*[J]. 《材料导报》期刊社, 2017, 31(20): 39-43.
[4] 鲍贤勇, 张峰, 鲁忠臣, 曾美琴, 朱敏. 低压烧结温度对一步法制备超细晶WC-Co基硬质合金组织及性能的影响[J]. 《材料导报》期刊社, 2017, 31(16): 65-71.
[5] 李志华, 肖平安, 李晨坤, 刘洋, 宋建勇, 陈超. 粗晶TM52钢结硬质合金的冲击磨料磨损性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 39-44.
[6] 宋凯强, 曾美琴, 朱敏, 胡仁宗, 鲁忠臣. 纳米相复合Al-Sn合金的反应球磨制备及性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 68-72.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed