Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 2047-2054    https://doi.org/10.11896/cldb.18040086
  金属与金属基复合材料 |
挤压态FGH4096合金的热变形行为及热加工图
陈龙, 司家勇, 刘松浩, 廖凯
中南林业科技大学机电工程学院,长沙 410004
Hot Deformation Behavior and Hot Processing Map of Extruded FGH4096Superalloy
CHEN Long, SI Jiayong, LIU Songhao, LIAO Kai
College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004
下载:  全 文 ( PDF ) ( 5681KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了获得挤压态FGH4096合金的热加工最佳工艺参数,利用Gleeble 3180D热模拟实验机对热挤压后的FGH4096合金进行了高温压缩实验,研究了其在变形温度1 020~1 140 ℃、应变速率0.001~1.0 s-1、压下量50%条件下的高温变形行为,分析了应变速率和变形温度对流变应力的影响,并基于双曲正弦模型与动态材料模型建立相应的本构方程和热加工图。结果表明,该合金的热变形激活能为1 128.79 kJ/mol;优化的热加工工艺参数范围为变形温度1 049~1 080 ℃、应变速率0.005~0.013 s-1,在该区域内合金的能量耗散率峰值为64%。通过微观组织分析发现,此区域内金相组织发生完全动态再结晶,合金的晶粒细小且均匀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈龙
司家勇
刘松浩
廖凯
关键词:  FGH4096合金  挤压态  热压缩  本构模型  热加工图    
Abstract: Aiming at acquiring the best processing parameter of extruded FGH4096 superalloy in plastic hot working, high temperature compression experiments of hot extruded FGH4096 superalloy were carried out on thermal simulation test machine Gleeble 3180D. The high temperature deformation behavior of extruded FGH4096 superalloy under the deformation temperature of 1 020 ℃ to 1 140 ℃, the strain rate of 0.001 s-1 to 1.0 s-1, and the compression reduction of 50% was investigated. Furthermore, the impact of the strain rate and deformation temperature on flow stress was analyzed and the related constitutive equations and hot processing map based on hyperbolic sinusoidal model and dynamic material model were constructed. The results indicated that the extruded FGH4096 superalloy was endowed with a thermal deformation activation energy of 1 128.79 kJ/mol. The optimal hot processing parameters lay in the deformation temperature of 1 049—1 080 ℃ and the strain rate of 0.005—0.013 s-1, respectively. In the optimal parameters, the peak energy dissipation rate was 64% and the complete dynamic recrystallization with fine and uniform grains was found by microstructure analysis.
Key words:  FGH4096 superalloy    hot extrusion    thermal compression    constitutive model    processing map
                    发布日期:  2019-05-31
ZTFLH:  V256  
基金资助: 国家自然科学基金面上项目(51475483);湖南省自然科学基金面上项目(2017JJ2403);湖南省教育厅重点研究项目(16A220);湖南省高校科技创新团队支持计划项目(2014207)
通讯作者:  sjy98106@163.com   
作者简介:  陈龙,现就读于中南林业科技大学,硕士研究生,主要研究粉末高温合金材料成形工艺、组织及性能。司家勇,中南林业科技大学,副教授。2009年毕业于钢铁研究总院,材料科学与工程博士学位。同年加入中南林业科技大学机电工程学院工作至今,主要从事高温合金材料成形工艺、组织及性能研究,重点研究先进航空发动机用粉末高温合金热加工成形过程的应力应变、数值模拟、显微组织及力学性能的分析以及应用研究。在国内外重要期刊发表文章30多篇,申报发明专利5项。
引用本文:    
陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
CHEN Long, SI Jiayong, LIU Songhao, LIAO Kai. Hot Deformation Behavior and Hot Processing Map of Extruded FGH4096Superalloy. Materials Reports, 2019, 33(12): 2047-2054.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040086  或          http://www.mater-rep.com/CN/Y2019/V33/I12/2047
1 Zou J W, Wang W X. Journal of Aeronautical Materials, 2006, 26(3), 244(in Chinese).
邹金文, 汪武祥. 航空材料学报, 2006, 26(3), 244.
2 Yang H, Bao R, Zhang J Y, et al. International Journal of Fatigue, 2011, 33(4), 632.
3 Zhang M J, Li F G, Wang S Y, et al. Materials Science and Engineering A, 2010, 527(24), 6771.
4 Yang J, Zou J W, Wang X F, et al. Journal of Materials Engineering, 2014(8), 1(in Chinese)
杨杰, 邹金文, 王晓峰, 等. 材料工程, 2014(8), 1.
5 Guo W M, Dong J X, Wu J T, et al. Journal of Iron and Steel, 2005, 17(1), 59(in Chinese).
国为民, 董建新, 吴剑涛, 等. 钢铁研究学报, 2005, 17(1), 59.
6 He G A, Liu F, Si J Y, et al. Materials and Design, 2015, 87, 256.
7 Fang B, Ji Z, Tian G F, et al. Chinese Journal of Engineering, 2015, 37(3), 336(in Chinese).
方彬, 纪箴, 田高峰, 等. 工程科学学报,2015,37(3), 336.
8 Zhang M, Liu G Q, Hu B F. Acta Metallurgica Sinica, 2017, 53(11), 1469(in Chinese).
张明, 刘国权, 胡本芙. 金属学报, 2017, 53(11), 1469.
9 Wang C Y, Dong Y P, Wang S Y, et al. Forging & Stamping Technology, 2014, 39(4), 126(in Chinese).
王超渊, 东赟鹏, 王淑云, 等. 锻压技术, 2014, 39(4), 126.
10Niu J T. Physical simulation technology of materials and heat processing, National Defense Industry Press, China, 1999(in Chinese).
牛济泰. 材料和热加工领域的物理模拟技术. 国防工业出版社, 1999.
11Chen W N. Gleeble system and application, Gleeble System Training School, USA, 1998.
12Xie X H, Yao Z K, Ning Y Q, et al. Rare Metal Materials and Enginee-ring, 2012, 41(1), 82(in Chinese).
谢兴华,姚泽坤,宁永权,等. 稀有金属材料与工程, 2012, 41(1), 82.
13Liu C Z, Liu F, Huang L, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(8), 2544.
14Xiong Y, Xiong L Y, Zhang L F, et al. The Chinese Journal of Nonferrous Metals, 2010, 20(4), 655(in Chinese).
熊毅, 熊良银, 张凌峰, 等. 中国有色金属学报, 2010, 20(4), 655.
15Li B, Pan Q L, Zhang Z Y, et al. Journal of Materials Engineering, 2013, 3(11), 6(in Chinese).
李波, 潘清林, 张志野, 等. 材料工程, 2013, 3(11), 6.
16Sellars C M, Tegart W J M G. Acta Metallurgica, 1966, 14(9), 1136.
17Jonas J J, Sellars C M, Tegart W J M G. Metallurgical Reviews, 1969, 14(1), 1.
18Ning Y Q, Yao Z K, Fu M W, et al. Materials Science and Engineering: A, 2011, 528(28), 8065.
19Liu Y H, Ning N Q, Yao Z K, et al. Journal of Alloys and Compounds, 2016, 675, 73.
20Sellars C M,Tegart W J M G. International Metallurgical Reviews,1972,17(1), 1.
21Zener C, Hollomon J H. Journal of Applied Physics, 1944, 15(1), 22.
22Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Metallurgical Tran-sactions A, 1984, 15(10), 1883.
23Yuan W H, Gong X H, Sun Y Q, et al. Journal of Materials Enginee-ring, 2016, 44(5), 8(in Chinese).
袁武华, 龚雪辉, 孙永庆, 等.材料工程, 2016, 44(5), 8.
24Xie B J, Guo Y F, Xu B, et al. Journal of Materials Engineering, 2016, 44(9), 16(in Chinese).
谢碧君, 郭逸丰, 徐斌, 等.材料工程, 2016, 44(9), 16.
25Navichandran N, Prasad Y V R K. Metallurgical Transactions A, 1991, 22(10), 2339.
26Prasad Y V R K. Metallurgical and Materials Transactions A, 1996, 27(1), 235.
27Prasad Y V R K, Seshacharyulu T. International Materials Reviews, 1998, 43(6), 243.
28Murty S V S N, Rao B N. Journal of Materials Science Letters, 1998, 17(14), 1203.
29Murty S V S N, Rao B N. Materials Science and Engineering: A, 1998, 254(1), 76.
[1] 郑嫄, 蔡中义, 程丽任, 车朝杰, 张洪杰. 铸态和挤压态Mg-4Sm-Al-0.3Mn-xZn合金微观组织和力学性能研究[J]. 材料导报, 2019, 33(8): 1354-1360.
[2] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[3] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[4] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[5] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[6] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[7] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[8] 周蕊, 李璐璐, 谢东, 张建国, 吴孟丽. 基于修正Drucker-Prager Cap模型的金属粉末成形本构模型参数确定方法[J]. 材料导报, 2018, 32(6): 1020-1025.
[9] 袁战伟, 李付国, 王春伟, 王瑜, 郭亚杰, 周亮. 基于Murty准则的SiCp/Al复合材料热加工图研究[J]. 《材料导报》期刊社, 2018, 32(4): 657-661.
[10] 江世永, 龚宏伟, 姚未来, 陶帅, 蔡涛. ECC材料力学性能与本构关系研究进展[J]. 材料导报, 2018, 32(23): 4192-4204.
[11] 刘少飞, 屈银虎, 王崇楼, 王彦龙, 成小乐, 王柯. 金属和合金高温变形过程本构模型的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2241-2251.
[12] 赵正阳, 孙明月, 孙建亮. 含稀土H13钢热变形行为及热加工图研究*[J]. CLDB, 2017, 31(8): 149-155.
[13] 余滨杉, 樊禹江, 王社良, 杨涛. 考虑加/卸载速率影响的Ti-Ni形状记忆合金简化本构模型[J]. 《材料导报》期刊社, 2017, 31(6): 153-160.
[14] 常若寒, 蔡中义, 程丽任, 车朝杰, 迟佳轩. 基于遗传BP网络的Mg-Sm-Zn-Zr合金应力预测模型及加工图[J]. 《材料导报》期刊社, 2017, 31(6): 136-139.
[15] 孙倩,陈冷. Cu-3.0Ni-0.64Si合金的热变形行为[J]. 材料导报编辑部, 2017, 31(22): 90-94.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed