Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (13): 2241-2251    https://doi.org/10.11896/j.issn.1005-023X.2018.13.015
  金属与金属基复合材料 |
金属和合金高温变形过程本构模型的研究进展
刘少飞1, 屈银虎2, 王崇楼1, 王彦龙2, 成小乐2, 王柯3
1 西安工程大学工程训练中心,西安 710048;
2 西安工程大学材料工程学院,西安 710048;
3 重庆大学材料科学与工程学院,重庆 400030
Advances in Constitutive Models of Metals and Alloys During Hot Deformation
LIU Shaofei1, QU Yinhu2, WANG Chonglou1, WANG Yanlong2, CHENG Xiaole2, WANG Ke3
1 Engineering Training Center, Xi’an Polytechnic University, Xi’an 710048;
2 Materials Science and Engineering College,Xi’an Polytechnic University, Xi’an 710048;
3 College of Materials Science and Engineering, Chongqing University, Chongqing 400030
下载:  全 文 ( PDF ) ( 1749KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本构模型是预测金属和合金高温变形行为的重要途径,在不同金属和合金选择合适的变形工艺参数、预防缺陷等方面起着至关重要的作用。在近年对金属和合金高温变形过程的研究中,常通过不同工艺参数下的各类高温变形试验来获取建立本构模型的原始数据,并将所获本构模型导入Deform、Ansys等模拟软件相应模块,以预测材料在锻造等过程中应力、应变速率、温度的分布规律,进而优化实际加工参数、避免缺陷的产生,同时减少耗材及资源浪费。   鉴于本构模型在优化加工参数、预防缺陷等方面的重要作用,对金属和合金本构模型的建立、选择等方面的研究较多,选择何种试验方法来获取建立材料本构模型的试验数据、运用何种数学或物理方法来建立材料的本构模型、选择何种本构模型进行预测、各类本构模型的优缺点及修正方法等都是金属和合金高温变形过程本构模型的研究重点。   在近些年的研究中,常运用热压缩、热拉伸、热扭转、分离式霍布金森压杆等高温变形试验方法来获取材料不同高温变形工艺参数下的原始数据,进而建立其本构模型。常用的本构模型大致可分为唯象型、物理基型及基于人工神经网络型。各类模型分别具有不同的适用性及优缺点,而缺点最终主要体现在部分工艺参数下的拟合偏差较大,针对该现象,各国学者不断对模型进行完善、修正,其中,除了模型本身的原因外,引起偏差的原因还包括没有考虑摩擦及变形热等宏观问题的影响。目前,常用的典型唯象型本构模型包括Arrhenius型本构模型、Johnson-Cook模型等,物理基模型如Zerilli-Armstrong型等,而基于人工神经网络模型则主要是利用输入层、隐含层及输出层进行预测,各类模型在数据处理的复杂性、物理意义等方面各有优缺点。   文章从金属和合金高温变形过程获取本构模型原始数据的试验方法、本构模型的种类及修正、模型的应用等方面综述了本构模型的研究及发展,分析并总结了不同本构模型的优缺点,指出了模型预测过程中个别参数下预测值与试验值偏差较大的现象及其修正方法,并展望了金属和合金高温变形过程本构模型未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘少飞
屈银虎
王崇楼
王彦龙
成小乐
王柯
关键词:  本构模型  高温变形  修正    
Abstract: Constitutive model is an important way to predict the hot deformation behavior of metals and alloys, which plays a significant role in selecting suitable deformation parameters and preventing defects for various metals and alloys. In the recent investigations of hot deformation behavior of metals and alloys, the original data for constitutive model is generally obtained by various kinds of hot deformation tests under different parameters, and then obtained constitutive model is imported to the corresponding part of simulation software like Deform and Ansys to predict the distribution law of strain, strain rate and temperature of materials during forging process, and further optimize the actual processing parameters, avoid defects, and reduce the waste of materials and resource.   Considering the importance of constitutive models in optimizing the working parameters and preventing the defects, tremendous strudies on construction and selection of constitutive models were conducted. The research focuses of constitutive model of metals and alloys in hot deformation can be concluded in the following aspects: the test method to obtain the original data for constitutive model construction, the mathematical or physical method for establishing the constitutive model, the selection of constitutive models for specified object, the advantage and disadvantage of various models and their revision.   In past years, the original data for constitutive model are usually acquired by hot compression, hot extension, hot torsion and Split Hopkinson Pressure Bar tests under different hot deformation parameters. The common constitutive models can be generally classified as phenomenological method, physical-based method and the ones using artificial neural network. Each kind of model has its unique applicability, advantages and disadvantages. The disadvantages finally lead to the apparent fitting deviation of several deformation parameters. Aiming at reducing the deviation, scholars over the world have been devoted to revise and improve the models. Apart to the intrinsic reasons of the models, the lack of consideration of the grand factors like friction and deformation heat would also lead to the deviation. Presently, the common phenomenological constitutive models include Arrhenius model, Johnson-Cook model and so forth, the physical-based model includes Zerilli-Armstrong model, while the artificial neural network model is always conducted by three layers. These models have various advantages and disadvantages in dealing with data or physical meaning.   This article summarizes the researches and developing direction of constitutive models from the aspects of the experimental methods to achieve the original data, the kinds and revision, and applications of the constitutive models. Also, the advantages and disadvantages of the typical constitutive models are discussed. The apparent deviation phenomenon of predicted and experimental data under several deformation parameters and the modified methods are pointed out. Finally, the future investigation direction of constitutive models of metals and alloys during hot deformation is predicted.
Key words:  constitutive model    hot deformation    modification
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  TG314  
基金资助: 陕西省科学技术研究发展计划—工业攻关资助项目(2013K09-33);国家自然科学基金青年科学基金资助项目(51501020);西安工程大学教改项目(2016JG69)
作者简介:  刘少飞:女,1989年生,硕士,工程师,主要从事金属材料高温塑性变形行为研究 E-mail:liushaofei0709@126.com
引用本文:    
刘少飞, 屈银虎, 王崇楼, 王彦龙, 成小乐, 王柯. 金属和合金高温变形过程本构模型的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2241-2251.
LIU Shaofei, QU Yinhu, WANG Chonglou, WANG Yanlong, CHENG Xiaole, WANG Ke. Advances in Constitutive Models of Metals and Alloys During Hot Deformation. Materials Reports, 2018, 32(13): 2241-2251.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.015  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2241
1 Xiao J, Li D S, Li X Q, et al. Constitutive modeling and microstructure change of Ti-6Al-4V during the hot tensile deformation[J].Journal of Alloys and Compounds,2012,541(15):346.
2 Ashtiani H R R, Parsa M H, Bisadi H. Constitutive equations for elevated temperature flow behavior of commercial purity aluminum[J].Materials Science and Engineering A,2012,545(5):61.
3 Sun Z C, Yang H, Han G J, et al. A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy[J].Materials Science and Engineering A,2010,527(15):3464.
4 Tang J P, Wu W T, Walters J. DEFORM system structure and description[M].SFTC Paper,1995:5.
5 Duan X J, Sheppard T. The influence of the constitutive equation on the simulation of a hot rolling process[J].Journal of Materials Processing Technology,2004,150(1-2):100.
6 Zhou M, Clode M P. Constitutive equations for modeling flow softening due to dynamic recovery and heat generation during plastic deformation[J].Mechanics of Materials,1998,27(2):63.
7 Li M Q, Chen S H, Xiong A M, et al. Acquiring a novel constitutive equation of a TC6 alloy at high-temperature deformation[J].Journal of Materials Engineering and Performance,2005,42(2):263.
8 Feng D, Zhang X M, Liu S D, et al. Constitutive equation and hot deformation behavior of homogenized Al-7.68Zn-2.12Mg-1.98Cu-0.12Zr alloy during compression at elevated temperature[J].Mate-rials Science and Engineering A,2014,608(7):63.
9 Zhang P, Li F G, Wan Q. Constitutive equation and processing map for hotdeformation of SiC particles reinforced metal matrix compo-sites[J].Journal of Materials Engineering and Performance,2010,19(9):1290.
10 Poursina M, Ebrahimi H, Parvizian J. Flow stress behavior of two stainless steels: An experimental-numerical investigation[J].Journal of Materials Processing Technology,2008,199(1):287.
11 Avramovic-Cingara G, McQueen H J, Perovic D D. Comparison of torsion and compression constitutive analyses for elevated temperature deformation of Al-Li-Cu-Mn alloy[J].Materials Science and Technology,2003,19(1):11.
12 Huang Y C, Lin Y C, Deng J, et al. Hot tensile deformation beha-viors and constitutive model of 42CrMo steel[J].Materials and Design,2014,53(2):349.
13 Lou Y, Chen H, Ke C X, et al. Hot tensile deformation characteristics and processing map of extruded AZ80 Mg alloys[J].Journal of Materials Engineering and Performance,2014,23(5):1904.
14 Spigarelli S, Mehtedi M E. A new constitutive model for the plastic flow of metals at elevated temperatures[J].Journal of Materials Engineering and Performance,2014,23(2):658.
15 Lin Y C, Ding Y, Chen M S, et al. A new phenomenological constitutive model for hot tensile deformation behaviors of a typical Al-Cu-Mg alloy[J].Materials and Design,2013,52(12):118.
16 Medina S F,Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and micro-alloyed steels[J].Acta Materialia,1996,44(1):137.
17 Karhausen K F, Roters F. Development and application of constitutive equations for the multiple-stand hot rolling of Al-alloys[J].Journal of Materials Processing Technology,2002,123(1):155.
18 Chen M, Niu Q L, An Q L, et al. Johnson-Cook constitutive equation for titanium alloy TC11[J].Key Engineering Materials,2014,589-590:140.
19 Mirzakhani B. Mathematical modeling of flow behaviour of API-X70 during hot torsion testing[J].Advanced Materials Research,2011,264-265:60.
20 Yu D H. Modeling high-temperature tensile deformation behavior of AZ31B magnesium alloy considering strain effects[J].Materials and Design,2013,51(10):323.
21 Khamei A A, Dehghani K, Mahmudi R. Modeling the hot ductility of AA6061 aluminum alloy after severe plastic deformation[J].Journal of Metals,2015,67(5):966.
22 Castellanos J, Rieiro I, Carsi M, et al. Analysis of adiabatic heating and its influence on the Garofalo equation parameters of a high nitrogen steel[J].Materials Science and Engineering A,2009,517(1-2):191.
23 Zhou M, Clode M P. Hot torsion tests to model the deformation behavior of aluminium alloys at hot working temperatures[J].Journal of Materials Processing Technology,1997,72(1):78.
24 Sellars C M, McTegart W J. On the mechanism of hot deformation[J].Acta Metallurgica,1966,14(9):1136.
25 Li J, Li F G, Cai J, et al. Flow behavior modeling of the 7050 aluminum alloy at elevated temperatures considering the compensation of strain[J].Materials and Design,2012,42(12):369.
26 Ou L, Nie Y F, Zheng Z Q. Strain compensation of the constitutive equation for high temperature flow stress of a Al-Cu-Li alloy[J].Journal of Materials Engineering and Performance,2014,23(1):25.
27 Li H Y, Li Y H, Wei D D, et al. Constitutive equation to predict elevated temperature flow stress of V150 grade oil casing steel[J].Materials Science and Engineering A,2011,530(1):367.
28 Li J B, Liu Y, Wang Y, et al. Constitutive equation and processing map for hot compressed as-cast Ti-43Al-4Nb-1.4W-0.6B alloy[J].Transactions of Nonferrous Metals Society of China,2013,23(11):3383.
29 Saravanan L, Senthilvelan T. Constitutive equation and microstructure evaluation of an extruded aluminum alloy[J].Journal of Mate-rials Research and Technology,2016,5(1):21.
30 Samantaray D, Mandal S, Bhaduti A K. Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel[J].Materials and Design,2010,31:981.
31 Liu Y C, Chen M S, Zhong J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J].Computional Mate-rials Science,2008,42(3):470.
32 Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature stress in a Ti-modified austenitic stainless steel[J].Materials Science and Engineering A,2009,500(1-2):114.
33 Cai J, Li F G, Liu T Y, et al. Constitutive equations for elevated temperature flow stress of Ti-6Al-4V alloy considering the effect of strain[J].Materials and Design,2011,32(3):1144.
34 Ding Z Y, Hu Q D, Zeng L, et al. Hot deformation characteristic of as-cast high-Cr ultra-super-critical rotor steel with columnar grains[J].International Journal of Minerals, Metallurgy and Materials,2016,23(11):1275.
35 Qian D S, Peng Y Y, Deng J D. Hot deformation behavior and constitutive modeling of Q345E alloy steel under hot compression[J].Journal of Central South University,2017,24(2):284.
36 Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strain, high strain rates and high temperature[C]∥Proceedings of the Seventh International Symposium on Ballistics. Den Haag, Netherlands,1983:541.
37 Shin H, Kim J B. A phenomenological constitutive equation to describe various flow stress behaviors of materials in wide strain rate and temperature regimes[J].Journal of Engineering Materials and Technology,2010,132(2):0210091.
38 Follansbee P S, Kocks U F. A constitutive description of the deforma-tion of copper based on the use of the mechanical threshold stress as an internal state variable[J].Acta Metallurgica,1988,36(1):81.
39 Preston D L, Tonks D L, Wallace D C. Model of plastic deformation for extreme loading conditions[J].Journal of Applied Physics,2003,93(1):211.
40 Follansbee P S. High strain rate deformation in FCC metals and alloys[J].Marcel Dekker Inc (Mechanical Engineering 52),1986,451:155.
41 Hoge K G, Mukherjee A K. The temperature and strain rate depen-dency of the flow stress of tantalum[J].Journal of Materials Science,1977,12(8):1666.
42 Kimj B, Shin H. Comparison of plasticity models for tantalum and a modification of the PTW model for wide ranges of strain, strain rate, and temperature[J].International Journal of Impact Enginee-ring,2009,36(5):746.
43 Shin H, Yoo Y H. Effect of the velocity of a single flying plate on the protection capability against obliquely impacting Long-Rod penetrators[J].Combustion Explosion and Shock Waves,2003,39(5):591.
44 Cai J, Wang K S, Zhai P, et al. A modified Johnson-Cook constitutive equation to predict hot deformation behavior of Ti-6Al-4V alloy[J].Journal of Materials Engineering and Performance,2015,24(1):32.
45 Zerilli P J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J].Journal of Applied Physics,1987,61:1816.
46 Samantaray D, Mandal S, Borah U, et al. A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J].Materials Science and Engineering A,2009,526(1-2):1.
47 Zhao J W, Ding H, Zhao W J, et al. Modelling of the hot deformation behavior of a titanium alloy using constitutive equations and artificial neural network[J].Computational Materials Science,2014,92:47.
48 Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J].Neural Networks,1989,2(5):359.
49 Genel K, Kurnaz S C, Durman M. Modeling of tribological properties of alumina fiber reinforced zinc-aluminum composites using artificial neural network[J].Materials Science and Engineering A,2003,363(1-2):203.
50 Chen H S, Feng Y, Ma F J, et al. Isothermal compression flow stress prediction of Ti-6Al-3Nb-2Zr-1Mo alloy based on BP-ANN[J].Rare Metal Materials and Engineering,2016,45(6):1549(in Chinese).
陈海生,冯勇,马凡蛟,等.基于BP-ANN网络Ti-6Al-3Nb-2Zr-1Mo合金等温压缩流变应力预测[J].稀有金属材料与工程,2016,45(6):1549.
51 He A, Wang X T, Xie G L, et al. Modified Arrhenius-type constitutive model and artificial neural network-based model for constitutive relationship of 316LN stainless steel during hot deformation[J].Journal of Iron and Steel Research(International),2015,22(8):721.
52 Cabrera J M, Al Omar A, Jonas J J, et al. Modeling the flow beha-vior of a medium carbon microalloyed steel under hot working conditions[J].Metallurgical and Materials Transaction A: Physical Metallurgy and Materials Science,1997,28(11):2233.
53 Mirzadeh H, Cabrera J M, Najafizadeh A. Constitutive relationships for hot deformation of austenite[J].Acta Materialia,2011,59(16):6441.
54 Frost H J, Ashby M F. Deformation-mechanism maps: The plasticity and creep of metals and ceramics[M].New York: Pergamon Press,1982:21.
55 Mirzadeh H. Constitutive description of 7075 aluminum alloy during hot deformation by apparent and physically-based approaches double multivariate nonlinear regression (DMNR) model[J].Journal of Materials Engineering and Performance,2015,24(3):1095.
56 Lenard J G. Modeling hot deformation of steels[M].Berlin:Springer,1989:101.
57 Sellars C M, Tegart W J. Hot workability[J].International Metallurgical Reviews,1972,17:1.
58 Xiao M L, Li F G, Zhao W, et al. Constitutive equation for elevated temperature flow behavior of TiNiNb alloy based on orthogonal analysis[J].Materials and Design,2012,35:184.
59 Wang L, Liu F, Zuo Q, et al. Prediction of flow stress for N08028 alloy under hot working conditions[J].Materials and Design,2013,47(3):737.
60 Wu B, Li M Q, Ma D W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy[J].Materials Science and Engineering A,2012,542(4):79.
61 Sellars C. The kinetics of softening processes during hot working of austenite[J].Journal of Physics,1985,35(3):239.
62 Zener C, Hollomon H. Effect of strain rate upon plastic flow of steel[J].Journal of Applied Physics,1944,15(1):15.
63 Shen G S, Semiatin S L, Shivpuri R. Modeling microstructural development during the forging of Waspaloy[J].Metallurgical Mate-rials and Transaction A,1995,26(7):1795.
64 Wang Z J, Qiang H F, Wang X R, et al. Constitutive model for a new kind of metastable β titanium alloy during hot deformation[J].Transactions of Nonferrous Metals Society of China,2012,22:634.
65 Gottstein G, Kocks U F. Dynamic recrystallization and dynamic recovery in 〈111〉 single crystals of nickel and copper[J].Acta Materialia,1983,31(1):175.
66 Gottstein G, Shvindlerman L S. Grain boundary migration in metals: Thermodynamics, kinetics, applications, second edition[M].Boca Raton: CRC Press,2009:211.
67 Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J].Acta Materialia,1979,13(3-4):187.
68 Liang H Q, Guo H Z, Ning Y Q, et al. Analysis on the constitutive relationship of TC18 titanium alloy based on the softening mechanism[J].Acta Metallurgica Sinica,2014,50(7):871.
69 Lin Y C, Li K K, Li H B, et al. New constitutive model for high-temperature deformation behavior of inconel 718 superalloy[J].Materials and Design,2015,74(5):108.
70 Molinari A, Ravichandran G. Constitutive modeling of high-strain-rate deformation in metals based on the evolution of an effective microstructural length[J].Mechanics of Materials,2005,37(7):737.
71 Voce E. The relationship between stress and strain for homogeneous deformation[J].Journal of the Institute Metals,1948,74:537.
72 Xie B S, Cai Q W, Yu W, et al. Prediction for flow stress of 95CrMo hollow steel during hot compression[J].Acta Metallurgica Sinica (English Letters),2017,30(3):250.
73 Wang Y H, Han F B, Lou H C, et al. Internal-atate-variable based constitutive modeling for near β Ti-7Mo-3Al-3Nb-3Cr alloy during hot deformation process[J].Rare Metal Materials and Engineering,2015,44(8):1883.
74 Yu H C, Dong C L, Jiao Z H, et al. High temperature creep and fatigue behavior and life prediction method of a TiAl alloy[J].Acta Metallurgica Sinica 2013,49(11):1311(in Chinese).
于慧臣,董成利,焦泽辉,等.一种合金的高温蠕变和疲劳行为及其寿命预测方法[J].金属学报,2013,49(11):1311.
75 Yin X N, Zhan L H, Zhao J. Establishment of steady creep constitutive equation of 2219 aluminum alloy[J].Transactions of Nonferrous Metals Society of China,2014,24(9):2251(in Chinese).
尹旭妮,湛利华,赵俊.2219铝合金稳态蠕变本构方程的建立[J].中国有色金属学报,2014,24(9):2251.
76 Zong Q. An investigation of the high temperature creep and superplastic deformation of AZ31 magnesium alloy[D].Wuhan: Wuhan University of Science and Technology,2007(in Chinese).
宗钦.AZ31镁合金高温蠕变及超塑性研究[D].武汉:武汉科技大学,007.
77 Xu L, Dai G Z, Huang X M, et al. Foundation and application of Al-Zn-Mg-Cu alloy flow stress constitutive equation in friction screw press die forging[J].Materials and Design,2013,47(5):465.
78 Luo J, Wu B, Li M Q. 3D finite element simulation of microstructure evolution in blade forging of Ti-6Al-4V alloy based on the internal state variable models[J].International Journal of Minerals, Me-tallurgy and Materials,2012,19(3):122.
79 Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a modified austenitic stainless steel[J].Materials Science and Engineering A,2002,322(1-2):43.
80 Mostafaei M A, Kazeminezhad M. Analyses on the flow stress of an Al-Mg alloy during dynamic recovery[J].Journal of Materials Engineering and Performance,2013,22(3):700.
81 Mostafaei M A, Kazeminezhad M. Hot deformation behavior of hot extruded Al-6Mg alloy[J].Materials Science and Engineering A,2012,535(2):216.
82 Meng G, Li B L, Li H M, et al. Hot deformation behavior of an Al-5.7wt% Mg alloy with erbium[J].Materials Science and Engineering A,2009,516(1-2):131.
83 Gholamzade A, Karimitaheri A. The prediction of hot flow behavior of Al-6%Mg alloy[J].Mechanics Research Communications,2009,36(2):252.
84 Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming[J].Journal of Materials Processing and Technology,2004,152(2):136.
85 Goetz R L, Semiatin S L. The adiabatic correction factor for defor-mation heating during the uniaxial compression test[J].Journal of Materials Engineering and Performance,2001,10(6):710.
86 Zhao D. Temperature correction in compression tests[J].Journal of Materials Processing and Technology,1993,36(4):467.
87 Fan J K, Kou H C, Lai M J, et al. Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333[J].Mate-rials and Design,2013,49(8):945.
[1] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[2] 聂光临, 包亦望, 田远, 万德田. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(2): 251-256.
[3] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[4] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[5] 周蕊, 李璐璐, 谢东, 张建国, 吴孟丽. 基于修正Drucker-Prager Cap模型的金属粉末成形本构模型参数确定方法[J]. 材料导报, 2018, 32(6): 1020-1025.
[6] 钟汝能, 郑勤红, 向泰, 姚斌. 颗粒填充二元复合材料等效介电特性的修正通用有效介质计算公式[J]. 材料导报, 2018, 32(24): 4258-4263.
[7] 江世永, 龚宏伟, 姚未来, 陶帅, 蔡涛. ECC材料力学性能与本构关系研究进展[J]. 材料导报, 2018, 32(23): 4192-4204.
[8] 吴萍萍, 张静静. 镁基复合材料高温变形研究进展[J]. 材料导报, 2018, 32(17): 3041-3050.
[9] 曹秀中, 赵冰, 韩秀全, 侯红亮, 曲海涛. 连续SiC纤维增强钛基复合材料横向高温变形机理研究*[J]. 《材料导报》期刊社, 2017, 31(8): 88-93.
[10] 余滨杉, 樊禹江, 王社良, 杨涛. 考虑加/卸载速率影响的Ti-Ni形状记忆合金简化本构模型[J]. 《材料导报》期刊社, 2017, 31(6): 153-160.
[11] 张文沛, 李欢欢, 胡志力, 秦训鹏. 车用轻量化铝合金材料本构关系研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 85-89.
[12] 唐徐,李落星,叶拓,李荣启,. 6013-T4铝合金不同温度下的动态流变应力及组织演变[J]. 材料导报编辑部, 2017, 31(10): 87-91.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed