Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4192-4204    https://doi.org/10.11896/j.issn.1005-023X.2018.23.021
  无机非金属及其复合材料 |
ECC材料力学性能与本构关系研究进展
江世永1, 2, 龚宏伟1, 姚未来1, 陶帅3, 蔡涛1
1 陆军勤务学院军事设施系,重庆 401331;
2 重庆交通大学土木工程学院,重庆 400074;
3 中国人民解放军72695部队,青岛 266103
A Survey on Mechanical Behavior and Constitutive Model of Engineered Cementitious Composite
JIANG Shiyong1, 2, GONG Hongwei1, YAO Weilai1, TAO Shuai3, CAI Tao1
1 Department of Military Facility, Army Logistics University of PLA, Chongqing 401331;
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074;
3 Unit 72695 of PLA, Qingdao 266103
下载:  全 文 ( PDF ) ( 2105KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土在国内外应用广泛,但普通混凝土材料存在抗拉强度低、韧性差和脆性特征明显等缺点。自20世纪90年代采用性能驱动设计方法(PDDA)成功配制工程水泥基复合材料(ECC)后,仅在几年时间里,ECC材料受到了研究者的广泛关注。相比普通混凝土,采用PDDA得到的ECC的外掺纤维与基体界面有良好的粘结作用,这使得ECC材料具有应变硬化和多缝开展等重要特征。由于ECC优异的力学性能,使用其替代混凝土便成为解决混凝土脆性、裂缝开展等相关问题的一种有效的新途径。
然而, ECC的制备极不容易,由于基体胶凝材料产地不同或者纤维种类不同,某一地区配制成功的配合比大多无法适用于其他地区。因此,根据当地情况进行ECC材料的配合比设计仍然是各国学者青睐的课题。一方面,欲使用ECC代替混凝土用于建筑结构等,就必定要深入研究ECC材料层面的基本力学性能。建立ECC的本构模型对ECC构件甚至结构层面的研究都十分重要,但相关研究较少。另一方面,由于ECC材料良好的裂缝控制能力,国内外学者也致力于使用ECC材料进行结构加固修复的研究。
各国学者先后成功配制极限拉应变大于3%的ECC,这为进一步广泛开展ECC的研究和应用创造了很好的条件,用于配制ECC的纤维种类也更加丰富。在ECC拉伸、压缩、弯曲和剪切等大量的材料试验研究基础上,近几年,一些科研团队开始尝试用ECC部分甚至完全代替混凝土来浇筑梁、柱等构件,然后进行ECC构件层次的力学性能和耐久性等研究;另有部分研究人员也致力于建立ECC的本构模型,开展数值模拟分析。此外,由于ECC优异的力学性能,也有学者提出可以采用3D打印技术来建造无筋ECC建筑。
本文从ECC材料层面的单轴单调拉压力学性能、单轴循环拉压滞回性能、多轴力学性能及破坏准则、ECC与普通钢筋和纤维增强塑料(FRP)筋两种筋材的粘结性能方面进行综述,相应介绍了几种本构模型并简要对其进行评价,以期为用ECC代替混凝土进行建筑结构设计、选取本构模型进行数值模拟分析、编制规范和技术规程等提供参考。最后,对今后进一步开展ECC力学性能研究、建立本构模型提出展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江世永
龚宏伟
姚未来
陶帅
蔡涛
关键词:  工程水泥基复合材料(ECC)  拉伸压缩  粘结滑移  力学性能  本构模型    
Abstract: It is universally known that concrete is widely used in construction over the world. Yet ordinary concrete materials possess the disadvantages of low tensile strength, poor toughness, and obvious brittleness. Since 1990s, engineered cementitious composite(ECC) has been successfully prepared by employing the performance driven design approach (PDDA), and then ECC has captured extensive research attention in only a few years. Compared with ordinary concrete, there is a favorable interaction between fibers and matrix of ECC obtained by PDDA, which endows ECC with unique features like strain hardening and multiple cracks development. Thanks to the excellent mechanical behaviors of ECC, replacing concrete with ECC has become an effective approach to resolve the problems associated with the brittleness and crack development of concrete.
Nevertheless, the preparation of ECC is extremely difficult. Due to the origin diversity of the cementitious materials or the different types of fibers, successful mix proportion for preparing ECC in a certain region cannot be applied to other regions usually. Therefore, proportion design of ECC materials according to the local conditions has become a popular topic among researchers all over the world. On the one hand, in order to use ECC as a substitute for conventional concrete in building structures, it is necessary to study the basic mechanical properties of ECC in depth. Establishing the constitutive model of ECC is quite important to the study of ECC components and structures, but there is few related studies. On the other hand, due to the great crack control capability of ECC, scholars at home and abroad are also devoted to the study of structural reinforcement and repair by ECC.
The ECC with ultimate tensile strain larger than 3% has been successfully prepared by foreign and domestic scholars successively, which has laid a good foundation for the extensive research and application of ECC. And the types of fibers which can be used for preparing ECC are also more abundant. On the basis of numerous tensile, compression, bending and shearing test of ECC materials, some research teams begin to use ECC to partially or completely replace concrete in construction of beams, columns and other components in recent years. Then, the mechanical behaviors and durability of the ECC components can be studied. Other researchers also dedicated to the establishment of the ECC constitutive model and carried out numerical simulation analysis. In addition, due to the excellent mechanical properties of ECC, some scholars have proposed that 3D printing technology can be used to construct steel free ECC building.
In terms of ECC materials, this article reviews the uniaxial monotonic tension or compression behavior, the uniaxial cyclic tension and compression hysteresis behavior, the multi-axial mechanical behavior and failure criterion, the bond behavior of ECC with steels or FRP bars. Several corresponding constitutive models are briefly introduced and evaluated, aiming at providing references for the structural design of buildings with ECC instead of concrete, selection of constitutive model for numerical simulation, and compi-lation specifications and technical regulations. Finally, further study on the mechanical behavior of ECC and the establishment of constitutive models are prospected.
Key words:  engineered cementitious composite (ECC)    tension and compression    bond slip    mechanical behavior    constitutive model
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  TU528  
基金资助: 重庆市高校优秀成果转化资助重点项目(KJZH14220); 重庆市科委科技攻关重点项目(CSTC2011AB0043)
作者简介:  江世永:男,1965年生,博士,教授,主要从事既有建筑检测及加固研究 E-mail:jiangshiy@163.com
引用本文:    
江世永, 龚宏伟, 姚未来, 陶帅, 蔡涛. ECC材料力学性能与本构关系研究进展[J]. 材料导报, 2018, 32(23): 4192-4204.
JIANG Shiyong, GONG Hongwei, YAO Weilai, TAO Shuai, CAI Tao. A Survey on Mechanical Behavior and Constitutive Model of Engineered Cementitious Composite. Materials Reports, 2018, 32(23): 4192-4204.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.021  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4192
1 Romualdi J P, Mandel J A.Tensile strength of concrete affected by uniformly distributed and closely spaced short lengths of wire reinforcement[J].ACI Structural Journal,1964,61(6):27.
2 Naaman A E, Reinhardt H W.High performance fiber reinforced cement composites HPFRCC-4: International RILEM workshop[J].Cement & Concrete Composites,2004,26(6):757.
3 Parramontesinos G J.High-performance fiber-reinforced cement composites: An alternative for seismic design of structures[J].ACI Structural Journal,2005,102(5):668.
4 Li V C, Leung C K Y. Steady-state and multiple cracking of short random fiber composites[J].Journal of Engineering Mechanics,1992,118(11):2246.
5 Li V C, Stang H, Krenchel H.Micromechanics of crack bridging in fiber-reinforced concrete[J].Materials & Structures,1993,26(8):486.
6 Mechtcherine V, Silva F D A, Müller S, et al. Coupled strain rate and temperature effects on the tensile behavior of strain-hardening cement-based composites (SHCC) with PVA fibers[J].Cement and Concrete Research,2012,42(11):1417.
7 Shin S K, Kim J, Lim Y M.Investigation of the strengthening effect of DFRCC applied to plain concrete beams[J].Cement and Concrete Composites,2007,29(6):465.
8 Xu S L, Li H D.A review on the development of research and application of ultra high toughness cementitious composites[J].China Civil Engineering Journal,2008,41(6):45(in Chinese).
徐世烺,李贺东.超高韧性水泥基复合材料研究进展及其工程应用[J].土木工程学报,2008,41(6):45.
9 Li V C, Wang S, Wu C.Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J].ACI Materials Journal,2001,98(6):483.
10 Yu J H, Wei Z F, Liu M, et al.Experimental research on hysteresis property of steel reinforced PP ECC beams[J].China Civil Enginee-ring Journal,2012(s2):34(in Chinese).
俞家欢,魏正峰,刘明,等.钢筋增强PP ECC梁滞回性能试验研究[J].土木工程学报,2012(s2):34.
11 Yu K Q, Yu J T, Dai J G, et al.Development of ultra-high perfor-mance engineered cementitious composites using polyethylene (PE) fibers[J].Construction & Building Materials,2018,158:217.
12 Qiao Z, Pan Z F, Meng S P, et al.Optimization of mix proportion and experiment analysis of mechanical properties of hybrid PVA-ECC[J].Journal of Civil, Architectural & Environmental Enginee-ring,2015(5):72(in Chinese).
乔治,潘钻峰,孟少平,等.混杂PVA-ECC配合比优化设计及力学性能试验研究[J].土木建筑与环境工程,2015(5):72.
13 Li X Y, Jiang S Y, Yao W L, et al.The tensile experiments and orthogonal analysis of high toughness cementitious composites[J].Journal of Logistical Engineering University,2017,33(3):29(in Chinese).
李雪阳,江世永,姚未来,等.高韧性水泥基复合材料拉伸试验与正交分析[J].后勤工程学院学报,2017,33(3):29.
14 Lu Z D, Lin C X, Yu J T, et al.High strength ultra-high ductile cementitious composite developed for steel-free construction[J].Journal of Tongji University(Natural Science),2017,45(6):880(in Chinese).
陆洲导,林晨旭,余江滔,等.可用于无钢筋建造的超强超韧水泥基复合材料[J].同济大学学报(自然科学版),2017,45(6):880.
15 Li V C.Engineered cementitious composites-tailored composites through micromechanical modeling[J].Journal of Advanced Concrete Technology,1998,1(3):1.
16 Li X Y, Jiang S Y, Tao S, et al.Orthogonal experimental study on compressive behavior of engineered cementitious composites[J].Bulletin of the Chinese Ceramic Society,2017,36(2):595(in Chinese).
李雪阳,江世永,陶帅,等.高韧性水泥基复合材料抗压强度正交试验研究[J].硅酸盐通报,2017,36(2):595.
17 Liu J Z, Han F Y, Zhou H X, et al.An overview on tensile behavior of ultra-high performance concrete[J].Materials Review A: Review Papers,2017,31(12):24(in Chinese).
刘建忠,韩方玉,周华新,等.超高性能混凝土拉伸力学行为的研究进展[J].材料导报:综述篇,2017,31(12):24.
18 Billington S L, Yoon J K.Cyclic response of unbonded posttensioned precast columns with ductile fiber-reinforced concrete[J].Journal of Bridge Engineering,2004,9(4):353.
19 江世永,陈进,飞渭,等.复合纤维材料混凝土结构的抗震性能[M].北京:中国建筑工业出版社,2018.
20 Xu L, Pan J, Chen J.Mechanical behavior of ECC and ECC/RC composite columns under reversed cyclic loading[J].Journal of Materials in Civil Engineering,2017,29(9):04017097.
21 Maruta M, Kanda T, Nagai S, et al.New high-rise RC structure using pre-cast ECC coupling beam[J].Concrete Journal,2005,43(11):18.
22 Gencturk B, Elnashai A S,Lepech M D, et al.Behavior of concrete and ECC structures under simulated earthquake motion[J].Journal of Structural Engineering,2013,139(3):389.
23 Cai X R.The basic mechanical performance and strain hardening process theoretical analysis of ultra high toughness cementitious composites [D]. Dalian:Dalian University of Technology,2010(in Chinese).
蔡向荣. 超高韧性水泥基复合材料基本力学性能和应变硬化过程理论分析[D].大连:大连理工大学,2010.
24 Jiang S Y, Tao S, Yao W L, et al.Mechanical performance and size effect of engineered cementitious composite (ECC) subjected to uniaxial compression[J].Materials Review B: Research Papers,2017,31(12):161(in Chinese).
江世永,陶帅,姚未来,等.高韧性纤维混凝土单轴受压性能及尺寸效应[J].材料导报:研究篇,2017,31(12):161.
25 Li V C.Progress and application of engineered cementitious compo-sites[J].Journal of the Chinese Ceramic Society,2007,35(4):531.
26 Kanda T, Lin Z, Li V C.Tensile stress-strain modeling of pseudostrain hardening cementitious composites[J].Journal of Materials in Civil Engineering,2000,12(2):147.
27 Gao S L.Study on pseudo strain-hardening and fracture characteristic of polyvinyl alcohol fiber reinforced cementitious composites[D].Dalian:Dalian University of Technology,2006(in Chinese).
高淑玲. PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究[D].大连:大连理工大学,2006.
28 Li H D.Experimental research on ultra high toughness cementitious composites[D]. Dalian:Dalian University of Technology,2009(in Chinese).
李贺东. 超高韧性水泥基复合材料试验研究[D].大连:大连理工大学,2009.
29 Han T S, Feenstra P H, Billington S L.Simulation of highly ductile fiber-reinforced cement based composite components under cyclic loading[J].ACI Structural Journal,2003,100(6):749.
30 Zhou J, Pan J, Leung C K Y. Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression[J].Journal of Materials in Civil Engineering,2015,27(1):04014111.
31 内维尔A M.混凝土的性能[M].李国洋,译.北京:中国建筑工业出版社,2011.
32 江见鲸,陆新征.混凝土结构有限元分析[M].北京:清华大学出版社,2013.
33 过镇海. 钢筋混凝土原理[M].北京:清华大学出版社,2013.
34 Xu S L, Cai X R, Zhang Y H.Experimental measurement and analysis of the axial compressive stress-strain curve of ultra high toughness cementitious composites[J].China Civil Engineering Journal,2009(11):79(in Chinese).
徐世烺,蔡向荣,张英华.超高韧性水泥基复合材料单轴受压应力-应变全曲线试验测定与分析[J].土木工程学报,2009(11):79.
35 Li Y, Liu Z J.Study on mechanical performance and constitutive equation of high toughness PVA-FRCC under uniaxial compression[J].Journal of Building Materials,2014,17(4):606(in Chinese).
李艳,刘泽军.高韧性PVA-FRCC单轴受压力学性能及本构关系[J].建筑材料学报,2014,17(4):606.
36 Gencturk B, Elnashai A S.Numerical modeling and analysis of ECC structures[J].Materials & Structures,2013,46(4):663.
37 Kesner K, Billington S L.Tension, compression and cyclic testing of engineered cementitious composite materials, MCEER-04-0002[R].New York: Multidisciplinary Center for Earthquake Engineering Research,2004.
38 Billington S L, Kesner K E.Cyclic response of highly ductile fiber-reinforced cement-based composites[J].ACI Materials Journal,2003,100(5):381.
39 Yankelevsky D Z.Model for cyclic compressive behavior of concrete[J].Journal of Structural Engineering,1987,113(2):228.
40 Yankelevsky D Z.Uniaxial behavior of concrete in cyclic tension[J].Journal of Structural Engineering,1989,115(1):166.
41 Swanepoel W.The behaviour of fiber reinforced concrete (SHCC) under biaxial compression and tension[D]. South Africa: Stellenbosch University,2011.
42 Wang L P.Experimental study on failure criteria and constitutive relations of high toughness ECC under biaxial stress states[D].Nanjing:Southeast University,2014.
王路平. 超高韧性ECC材料双轴破坏准则和本构关系的试验研究[D].南京:东南大学,2014.
43 Molapo K T.The behaviour of strain-hardening cement composites under biaxial compression[D].South Africa: Stellenbosch University,2010.
44 Zhou J J, Pan J L, Leung C K Y, et al. Experimental study on mechanical behaviors of pseudo-ductile cementitious composites under biaxial compression[J].Science China,2013,56(4):963.
45 Pan J L, He J X, Wang L P, et al.Experimental study on mechanical behaviors and failure criterion of engineered cementitious compo-sites under biaxial compression[J].Engineering Mechanics,2016,33(6):186(in Chinese).
潘金龙,何佶轩,王路平,等.ECC双轴压力学性能及破坏准则试验研究[J].工程力学,2016,33(6):186.
46 Li Y, Liang X W, Deng M K.A constitutive model for high performance PVA fiber reinforced cement composites under conventional triaxial compression[J].Engineering Mechanics,2012,29(1):106(in Chinese).
李艳,梁兴文,邓明科.高性能PVA纤维增强水泥基复合材料常规三轴受压本构模型[J].工程力学,2012,29(1):106.
47 Li Y, Liang X W, Liu Z J.Strength and deformation properties of HPFRCC under conventional triaxial compression[J].Journal of Building Materials,2012,15(2):168(in Chinese).
李艳,梁兴文,刘泽军.HPFRCC常规三轴受压强度和变形特性[J].建筑材料学报,2012,15(2):168.
48 Li Y, Wang W W, Wen C G.Experiment study on mechanical performance of ECC under conventional triaxial compression[J].Concrete,2016(1):59(in Chinese).
李艳,王伟伟,温从格.ECC常规三轴受压力学性能试验研究[J].混凝土,2016(1):59.
49 Li Y, Liang X W, Liu Z J.Behavior of high performance PVA fiber reinforced cement composites in triaxial compression[J].Journal of Wuhan University of Technology,2010,6(17):179.
50 Richart F E, Brandtzæg A, Brown R L.A study of the failure of concrete under combined compressive stresses[R]. Illinois: Engineering Experiment Station, University of Illinois,Urbana,1928.
51 江见鲸,李杰,金伟良.高等混凝土结构理论[M].北京:中国建筑工业出版社,2007.
52 Lee S W, Kang S B, Tan K H, et al.Experimental and analytical investigation on bond-slip behaviour of deformed bars embedded in engineered cementitious composites[J].Construction & Building Materials,2016,127:494.
53 Chao S H, Naaman A E, Parra-Montesinos G J. Bond behavior of reinforcing bars in tensile strain-hardening fiber-reinforced cement composites[J].ACI Structural Journal,2009,106(6):897.
54 Chao S H, Naaman A E, Parra-Montesinos G J. Local bond stress-slip models for reinforcing bars and prestressing strands in high-performance fiber-reinforced cement composites[J].Prestressing,2010,1989:357.
55 Xu S L, Wang H C.Experimental study on bond-slip between ultra high toughness cementitious composites and steel bar[J].Engineering Mechanics,2008,25(11):53(in Chinese).
徐世烺,王洪昌.超高韧性水泥基复合材料与钢筋粘结本构关系的试验研究[J].工程力学,2008,25(11):53.
56 Gao D Y, Zhu H T, Xie J J.The constitutive models for bond slip relation between FRP rebars and concrete[J].Industrial Construction,2003,33(7):41(in Chinese).
高丹盈,朱海堂,谢晶晶.纤维增强塑料筋混凝土粘结滑移本构模型[J].工业建筑,2003,33(7):41.
57 Mi Y, Pan J L, Zhou Q S.Experimental study on bond behavior between steel bars and patterned vertical alignment engineered cementitious composite[J].Building Structure,2016(15):69(in Chinese).
米渊,潘金龙,周青山.钢筋与纤维增强水泥基复合材料粘结性能试验研究[J].建筑结构,2016(15):69.
58 Xu Y L, Shen W D, Wang H.An experimental study of bond-anchorage properties of bars in concrete[J].Journal of Building Structures,1994(3):26(in Chinese).
徐有邻,沈文都,汪洪.钢筋砼粘结锚固性能的试验研究[J].建筑结构学报,1994(3):26.
59 Hou L J, Zhou B X, Liu H, et al.Interfacial bond behavior between corroded reinforcement and fiber reinforced cementitious materials[J].Journal of Building Materials,2017(6):862(in Chinese).
侯利军,周秉轩,刘泓,等.锈蚀钢筋与纤维水泥基材料的界面黏结性能[J].建筑材料学报,2017(6):862.
60 Cai X H, Xu S L, Yin S P, et al.Experimental research on bond behaviors of corroded rebar and ultra high toughness cementitious composites (UHTCC)[J].Journal of Chinese Society for Corrosion and Protection,2012,32(3):228(in Chinese).
蔡新华,徐世烺,尹世平,等.超高韧性水泥基复合材料与锈蚀钢筋粘结性能试验研究[J].中国腐蚀与防护学报,2012,32(3):228.
61 Fischer G, Li V C.Deformation behavior of fiber-reinforced polymer reinforced engineered cementitious composite (ECC) flexural members under reversed cyclic loading Conditions[J].ACI Structural Journal,2003,100(1):25.
62 Mi Y.Experimental and theoretical study on bond behavior between FRP bar and ECC[D]. Nanjing: Southeast University,2015(in Chinese).
米渊. FRP筋与ECC粘结性能试验和理论研究[D].南京:东南大学,2015.
63 ACI Committee 408. Bond and development of straight reinforcing bars in tension, ACI 408R-03[R]. Michigan: American Concrete Institute Committee 408,2003.
64 Hossain K M A. Bond strength of GFRP bars embedded in engineered cementitious composite using RILEM beam testing[J].International Journal of Concrete Structures & Materials,2018,12(1):6.
65 Hao Q, Wang Y, He Z, et al.Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete[J].Construction & Building Materials,2009,23(2):865.
66 Canadian Standards Association.Design and construction of building components with fiber reinforced polymers, CSA S806-12[S]. Toronto: Canadian Standards Association,2012.
67 Canadian Standards Association.Canadian highway bridge design code, CSA S6-06[S]. Toronto: Canadian Standards Association,2006.
68 ACI Committee 440. Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer bars, ACI 440.1R-15[R]. Michigan: American Concrete Institute Committee 440,2015.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[15] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed