Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4182-4191    https://doi.org/10.11896/j.issn.1005-023X.2018.23.020
  无机非金属及其复合材料 |
钢筋混凝土粘结滑移研究综述
郑山锁, 裴培, 张艺欣, 董立国, 郑捷, 董方园
西安建筑科技大学土木工程学院,西安 710055
Review of Research on Bond-Slip of Reinforced Concrete
ZHENG Shansuo, PEI Pei, ZHANG Yixin, DONG Liguo, ZHENG Jie, DONG Fangyuan
School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055
下载:  全 文 ( PDF ) ( 1377KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钢筋混凝土(Reinforced concrete, RC)作为近现代土木工程领域中最重要的组合材料,在实际工程中得到了大量应用。钢筋与混凝土之间良好的粘结性能是保证RC结构服役性能的关键,影响着RC结构生命周期不同阶段的力学性能。然而,由于钢筋混凝土界面粘结滑移关系十分复杂,且涉及多种变量,因而实际结构分析中一般忽略了粘结滑移对RC结构整体力学性能的影响,即认为二者间完全粘结,忽略了二者间的相对滑移,从而导致分析结果与实际存在较大偏差。
迄今为止,国内外学者基于大量试验研究,综合考虑影响钢筋混凝土粘结性能的多种因素,建立了相应的粘结滑移本构关系及模型。在此基础上,一些学者则结合试验研究与理论分析,建立了钢筋混凝土粘结滑移的理论模型和数值模拟方法,通过将其带入结构分析以考虑粘结滑移效应,从而提高了对结构响应的模拟精度。因此,准确揭示钢筋与混凝土间的粘结失效机理及其影响因素,表征各因素对钢筋混凝土粘结性能的影响规律,建立相应的粘结滑移本构关系和数值模拟方法,并将其应用于实际结构分析中,是提高分析结果精度、改善整体结构受力性能的前提。
鉴于此,本文综合国内外相关研究成果,分别从粘结机理、试验研究、理论和数值模型三个角度出发,对钢筋混凝土粘结滑移研究现状展开了详细综述。首先,在粘结滑移关系表征及其破坏机理方面,简要分析了粘结应力计算方法、粘结滑移本构关系建立及粘结破坏模式。在试验研究方面,详细描述了国内外相关试验研究和基于试验建立的粘结滑移本构关系,并对影响粘结性能的各种因素进行了归纳总结。在模型分析方面,具体介绍了粘结滑移的理论模型及数值模型,并将数值建模方法划分为直接模拟法和间接模拟法,进而简要分析了两种方法的优缺点和适用性。最后,对该研究方向中存在的不足以及进一步研究的趋势进行了分析,指出考虑钢筋锈蚀、冻融循环等环境因素耦合作用影响的粘结滑移问题是未来钢筋混凝土粘结滑移研究的重点方向,在后续工作中需要借助更加广泛的试验研究及理论分析来丰富该领域研究,以期进一步完善混凝土基本理论体系,并为实际工程结构的耐久性提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑山锁
裴培
张艺欣
董立国
郑捷
董方园
关键词:  钢筋混凝土结构  粘结滑移  应变渗透  拉拔试验  数值建模    
Abstract: As the most primary composite material in the field of modern civil engineering, reinforced concrete (RC) has been widely adopted in practical engineering. A favorable bond behavior between concrete and reinforcement plays a pivotal role in service performance of RC structure, which affects the mechanical properties in different stages of a structure's life circle. However, since the interfacial bond-slip relationship of RC related to diverse variants is extremely complex, the impact of bond-slip behavior is gene-rally neglected in the actual structural analysis, hence leading to a large deviation between the analysis result and the actual one.
Up to date, domestic and foreign scholars have established a corresponding bond-slip constitutive relationship and model through numerous experimental investigations and comprehensively analyzing various factors affecting the bond-slip behavior. Based on the previous studies, some scholars have developed theoretical models and numerical modeling methods for bond-slip behavior of RC. It is demonstrated that the simulation accuracy of the structural response can be enhanced through utilizing the bond-slip models in structural analysis. Therefore, in order to improve the accuracy of analysis results and ameliorate the overall structural mechanical performance, it is necessary to reveal the bond failure mechanism and pertinent influencing factors of RC, obtain the influencing regular pattern of diverse factors on the bond-slip behavior, and develop corresponding bond-slip constitutive relations and numerical mode-ling methods and apply them into the structural analysis.
In this paper, the research findings with regard to the bond-slip relationship of RC are detailedly reviewed from the aspects of bond mechanisms, experimental study, and theoretical and numerical models. Firstly, the calculation methods of bond stress, the establishment of bond-slip constitutive relationship and the bond failure modes are briefly expounded. Furthermore, in the aspect of experimental research, a series of correlative bond tests at home and abroad and the corresponding bond-slip constitutive relationships are elaborated, and various factors affecting the bonding performance are summarized. In the aspect of model analysis, the theoretical models and numerical models of bond-slip are expatiated, wherein the numerical modeling methods are classified into direct modeling methods and indirect modeling methods. Then the merits and demerits and applicability of the two methods are briefly introduced. Finally, the writer analyzes the deficiencies in the bond-slip research as well as future research directions and trends, and points out that the bond-slip relation considering the coupled effect of environmental factors such as reinforcement corrosion, freeze-thaw cycles action, etc. is the crux of future research on bond-slip of RC. Thus, extensive experimental research and theoretical analysis should be devoted to enrich the research in this field for further perfecting the basic theoretical system of RC, which can provide a reference for the durability of the practical engineering structure.
Key words:  reinforced concrete structures    bond-slip    strain penetration    pullout tests    numerical modeling
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  TU528  
基金资助: 国家科技支撑计划(2013BAJ08B03); 国家自然科学基金(51678475); 陕西省重点研发计划(2017ZDXM-SF-093); 陕西省教育厅产业化项目(18JC020)
作者简介:  郑山锁:男,1960年生,教授,博士研究生导师,目前主要从事工程结构抗震方面的研究 E-mail:zhengshansuo@263.net;裴培:女,1993年生,硕士研究生,主要从事工程结构抗震的研究 E-mail:ppmake_it@yeah.net
引用本文:    
郑山锁, 裴培, 张艺欣, 董立国, 郑捷, 董方园. 钢筋混凝土粘结滑移研究综述[J]. 材料导报, 2018, 32(23): 4182-4191.
ZHENG Shansuo, PEI Pei, ZHANG Yixin, DONG Liguo, ZHENG Jie, DONG Fangyuan. Review of Research on Bond-Slip of Reinforced Concrete. Materials Reports, 2018, 32(23): 4182-4191.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.020  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4182
1 ACI Committee 408. Bond and development of straight reinforcing bars in tension (ACI 408R-03)[S].Farmington Hills: American Concrete Institute,2003.
2 Melo J, Fernandes C, Varum H, et al.Numerical modelling of the cyclic behaviour of RC elements built with plain reinforcing bars[J].Engineering Structures,2011,33(2):273.
3 Sezen H, Setzler E J.Reinforcement slip in reinforced concrete co-lumns[J].ACI Structural Journal,2008,105(3):280.
4 Eligehausen R, Popov E P, Bertero V V.Local bond stress-slip relationships of deformed bars under generalized excitations[R].Berkeley: University of California,1983.
5 Oh B H, Kim S H.Realistic models for local bond stress-slip of reinforced concrete under repeated loading[J].Journal of Structural Engineering,2007,133(2):216.
6 Filippou F C, Popov E P, Bertero V V.Modeling of R/C joints under cyclic excitations[J].Journal of Structural Engineering,1983,109(11):2666.
7 Tassios T P, Yannopoulos P J.Analytical studies on reinforced concrete members under cyclic loading based on bond stress-slip relationships[J].Journal of the American Concrete Institute,1981,78(3):206.
8 Altoontash A.Simulation and damage models for performance assessment of reinforced concrete beam-column joints[D].California: Stanford University,2004.
9 Morris G J.Experimental evaluation of local bondbehaviour of deformed reinforcing bars in concrete structures[D].Christchurch: University of Canterbury,2015.
10 Mains R M.Measurement of the distribution of tensile and bond stresses along reinforcing bars[J].ACI Journal Proceedings,1951,48(17):225.
11 Shima H, Chou L L, Okamura H.Micro and macro models for bond in reinforced concrete[J].Journal of the Faculty of Engineering,1987,39(2):133.
12 Kankam C K.Relationship of bond stress, steel stress, and slip in reinforced concrete[J].Journal of Structural Engineering,1997,123(1):79.
13 Mergos P E, Kappos A J.A gradual spread inelasticity model for R/C beam-columns, accounting for flexure, shear and anchorage slip[J].Engineering Structures,2012,44(6):94.
14 Mergos Panagiotis, Kappos Andreas.Estimating strain penetration fixed-end rotations of reinforced concrete beam and column members[C]∥Second European Conference on Earthquake Engineering and Seismology. Istanbul,2014:25.
15 Lutz L A,Gergely P.Mechanics of bond and slip of deformed bars in concrete[J].ACI Journal Proceedings,1967,64(11):711.
16 Tepfers R.Cracking of concrete cover along anchored deformed reinforcing bars[J].Magazine of Concrete Research,1979,31(106):3.
17 Cairns J.An analysis of the ultimate strength of lapped joints of compression reinforcement[J].Magazine of Concrete Research,1979,31(106):19.
18 Saeed M N.Internal measurement of bond stress slip relationship in reinforced concrete[J].ACI Journal,1979,76(1):19.
19 CEB-FIP.CEB-FIP Model Code 1990[S].Bulletin d’Information 213/214, Lausanne, Switzerland,1993.
20 CEB-FIP.CEB-FIB Model Code 2010[S].Vol. 1, Final Drift, fib bulletin 66, Lausanne, Switzerland,2012.
21 Guizani L, Chaallal O, Mousavi S S.Local bond stress-slip model for R/C joints and anchorages with moderate confinement[J].Canadian Journal of Civil Engineering,2017,44(3):1.
22 Xu Y L.A simplified model of bond-slip relationship for reinforced concrete[J].Engineering Mechanics,1997(a02):34(in Chinese).
徐有邻. 钢筋混凝土粘滑移本构关系的简化模型[J].工程力学,1997(a02):34.
23 Zhao J,Sritharan S.Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures[J].ACI Structural Journal,2007,104(2):133.
24 Yu J, Tan K H.Bar stress-slip relationship in reinforced concrete joints with large inelastic bar strains[C]∥International Conference of Design and Analysis of Protective Structures. JeJu, Korea,2012.
25 Liang X,Sritharan S.An investigation of the bond-slip behavior of reinforcing steel subjected to inelastic strains[C]∥Tenth U.S. National Conference on Earthquake Engineering Fronties of Earthquake Engineering. Anchorage, Alaska,2014:12.
26 Wang N.Local bond-slip behavior of deformed steel bars with inelastic deformation[D].Milwaukee: University of Wisconsin-Milwaukee,2008.
27 Tastani S P, Pantazopoulou S J, Asce M.Direct tension pullout bond test: Experimental results[J].Journal of Structural Engineering,2010,136(6):731.
28 Hadi M N S. Bond of High strength concrete with high strength reinforcing steel[J].Open Civil Enginee-ring Journal,2008,2(1):143.
29 Metelli G, Plizzari G A.Influence of the relative rib area on bond behaviour[J].Magazine of Concrete Research,2014,66(6):277.
30 Jaafar E K.Experimental study on anchorage bond in high strength reinforced concrete beams[J].International Journal of Civil Enginee-ring & Technology,2017,8(1):63.
31 Jones K, Cairns J.Influence of rib geometry on strength of lapped joints: An experimental and analytical study[J].Magazine of Concrete Research,1995,47(172):253.
32 Zuo J, Darwin D.Bond slip of high relative rib area bars under cyclic loading[J].ACI Structural Journal,2000,97(2):331.
33 Zuo J, Darwin D.Splice strength of conventional and high relative rib area bars in normal and high-strength concrete[J].ACI Structural Journal,2000,97(4):630.
34 Kabir M R, Islam M M, Chowdhury M A.Bond stress-slip behavior between concrete and steel rebar via pull-out test: experimental and finite element analysis[C]∥First International Conference on Advances in Civil Infrastructure and Construction Materials. Dhaka, Bangladesh,2015.
35 Praveen K T H,Santhakumar A R, Swedha T. Experimental investigation on the effect of bond-Slip behaviour of steel rebars in concrete[J].Global Research and Development Journal for Engineering,2016,1(4):24.
36 Delso J M, Stavridis A, Shing P.Bond strength and cyclic bond deterioration of large-diameter bars[J].ACI Structural Journal,2013,110(4):659.
37 Shen D, Shi X, Zhang H, et al.Experimental study of early-age bond behavior between high strength concrete and steel bars using a pull-out test[J].Construction & Building Materials,2016,113:653.
38 Teng Z M, Zou X L.Nonlinear finite element analysis of RC members under reversed cyclic loading[J].China Civil Engineering Journal,1996(2):19(in Chinese).
滕智明,邹离湘.反复荷载下钢筋混凝土构件的非线性有限元分析[J].土木工程学报,1996(2):19.
39 Yerlici V A, Özturan T.Factors affecting anchorage bond strength in high-performance concrete[J].ACI Structural Journal,2000,97(3):499.
40 Untrauer R E, Henry R L.Influence of normal pressure on bond strength[J].Journal of American Concrete Institute,1965,62(5):577.
41 Robins P J, Standish I G.The effect of lateral pressure on the bond of round reinforcing bars in concrete[J].International Journal of Adhesion & Adhesives,1982,2(2):129.
42 Batayneh M K, Regan P E, Walker P R.Measured and design bond strengths of deformed bars, including the effect of lateral compression[J].Magazine of Concrete Research,1999,51(1):13.
43 Xu F.Bond performance of reinforcement in concrete subjected to complex lateral pressure[D].Dalian: Dalian University of Technology,2012(in Chinese).
徐锋. 复杂应力状态下钢筋与混凝土的粘结性能[D].大连:大连理工大学,2012.
44 Cairns J.Bond and anchorage of embedded steel reinforcement in fib Model Code 2010[J].Structural Concrete,2015,16(1):45.
45 Lindorf A, Lemnitzer L, Curbach M.Experimental investigations on bond behaviour of reinforced concrete under transverse tension and repeated loading[J].Engineering Structures,2009,31(7):1469.
46 Lindorf A, Curbach M.Slip behaviour at cyclic pullout tests under transverse tension[J].Construction & Building Materials,2011,25(8):3617.
47 Morris G J, Bull D K, Bradley B A.Monotonic and cyclic bondbehaviour of deformed bars in reinforced concrete structures[C]∥Conference Proceedings of the New Zealand Society of Earthquake Engineering. Rotorua, New Zealand,2015.
48 Ye Z, Zhang W P,Hu Y, et al.Experimental study on effects of fatigue loading history on bond behavior between steel bars and concrete[J].Key Engineering Materials,2016,711:673.
49 Al-Ahdal Aboulmajid Abdullah Salem. Effect of loa-ding rate on bond behavior of reinforcing bars embedded in concrete[D].Dalian: Dalian University of Technology,2015(in Chinese).
Al-Ahdal Aboulmajid Abdullah Salem.加载速率对钢筋与混凝土粘结性能的影响[D].大连:大连理工大学,2015.
50 Marti P, Alvarez M, Kaufmann W, et al.Tension chord model for structural concrete[J].Structural Engineering International,1998,8(4):287.
51 Lowes L N,Moehle J P, Govindjee S.Concrete-steel bond model for use in finite element modeling of reinforced concrete structures[J].ACI Structural Journal,2004,101(4):501.
52 Fernández Ruiz M, Muttoni A, Gambarova P G.Analytical mode-ling of the pre- and post-yield behaviour of bond in reinforced concrete[J].ASCE Journal of Structure Engineering,2007,133(10):1364.
53 Wu H Q, Gilbert R I.Modeling short-term tension stiffening in reinforced concrete prisms using a continuum-based finite element model[J].Engineering Structures,2009,31(10):2380.
54 Mazzarolo E, Scotta R, Berto L, et al.Long anchorage bond-slip formulation for modeling of r.c. elements and joints[J].Engineering Structures,2012,34(1):330.
55 Engström B, Magnusson J, Huang Z.Pull-out behavior of ribbed bars in normal and high-strength concrete with various confinements[J].Research Update,1998,180:215.
56 Hong S, Park S K.Uniaxial bond stress-slip relationship of reinforcing bars in concrete[J].Advances in Materials Science & Enginee-ring,2012,2012(1):499.
57 Li L L.Theoretical and experimental study on bond stress-slip relationship between ribbed bar and concrete[D].Dalian: Dalian University of Technology,2016(in Chinese).
李龙龙. 带肋钢筋与混凝土粘结滑移本构关系的理论和试验研究[D].大连:大连理工大学,2016.
58 Lundgren K,Gylltoft K.Model for the bond between concrete and reinforcement[J].Magazine of Concrete Research,2000,52(1):53.
59 Mendes L A M, Castro L M S S. A new RC bond model suitable for three-dimensional cyclic analyses[J].Computers & Structures,2013,120(8):47.
60 Casanova A, Jason L,Davenne L.Bond slip model for the simulation of reinforced concrete structures[J].Engineering Structures,2012,39(39):66.
61 Lobo P S, Almeida J.RC fiber beam-column model with bond-slip in the vicinity of interior joints[J].Engineering Structures,2015,96:78.
62 Santos J,Henriques A A.New finite element to model bond-slip with steel strain effect for the analysis of reinforced concrete structures[J].Engineering Structures,2015,86:72.
63 Murcia-Delso Juan, Shing P Benson.Bond-slip model for detailed finite-element analysis of reinforced concrete structures[J].Journal of Structural Engineering,2014,141(4):04014125-1.
64 Murcia-Delso J, Shing P B.Elastoplastic dilatant interface model for cyclic bond-slip behavior of reinforcing bars[J].Journal of Enginee-ring Mechanics,2016,142(2):04015082-1.
65 Sritharan S, Priestley M J N, Seible F. Nonlinear finite element analyses of concrete bridge joint systems subjected to seismic actions[J].Finite Elements in Analysis & Design,2000,36(3-4):215.
66 Ngo D,Scordelis A C.Finite element analysis of reinforced concrete beams[J].ACI Structural Journal,1967,64(3):152.
67 Zhao L, Zhang W,Bai X, et al.Single spring joint element based on the mixed coordinate system[J].Mathematical Problems in Engineering,2015,2015,979678.
68 Zhao J,Sritharan S.Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures concrete structures[J].ACI Structural Journal,2007,104(2):133.
69 ZhangPeizhou, Hou Shuang, Ou Jinping. A beam-column joint element for analysis of reinforced concrete frame structures[J].Engineering Structures,2016,118:125.
70 Dehestani M, Mousavi S S.Modified steel bar model incorporating bond-slip effects for embedded element method[J].Construction & Building Materials,2015,81:284.
71 Pan W H, Tao M X,Nie J G.Fiber beam-column element model considering reinforcement anchorage slip in the footing[J].Bulletin of Earthquake Engineering,2017,15(3):991.
72 Esmaeily A.Behavior of reinforced concrete columns under variable axial loads[J].ACI Materials Journal,2004,101(1):124.
73 Sun Z G, Chen C, Si B J, et al.Seismic analysis model considering nonlinear shear effect for RC bridge piers[J].Engineering Mechanics,2015,32(5):28(in Chinese).
孙治国,陈灿,司炳君,等.考虑非线性剪切效应的RC桥墩抗震分析模型[J].工程力学,2015,32(5):28.
74 Teng Zhenchao, Zhao Tianjia.Analysis of mechanical properties of cross-shaped section columns[J].Journal of Chongqing University of Technology (Natural Science),2017,31(6):78(in Chinese).
滕振超,赵添佳.十字形柱的力学性能分析[J].重庆理工大学学报(自然科学),2017,31(6):78.
[1] 白晓宇, 匡政, 张明义, 王永洪, 刘俊伟, 闫楠. 全螺纹GFRP抗浮锚杆与混凝土底板黏结锚固性能的试验研究[J]. 材料导报, 2019, 33(18): 3035-3042.
[2] 江世永, 龚宏伟, 姚未来, 陶帅, 蔡涛. ECC材料力学性能与本构关系研究进展[J]. 材料导报, 2018, 32(23): 4192-4204.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed