Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4170-4181    https://doi.org/10.11896/j.issn.1005-023X.2018.23.019
  无机非金属及其复合材料 |
海洋环境下混凝土中钢筋锈蚀机理及监测技术概述
李哲, 金祖权, 邵爽爽, 徐翔波
青岛理工大学土木工程学院,青岛 266033
A Review on Reinforcement Corrosion Mechanics and Monitoring Techniques in Concrete in Marine Environment
LI Zhe, JIN Zuquan, SHAO Shuangshuang, XU Xiangbo
School of Civil Engineering, Qingdao University of Technology, Qingdao 266033
下载:  全 文 ( PDF ) ( 4093KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 2014年我国由于腐蚀产生的损失约为21 278亿元,占国家GDP的3.34%。海洋环境中氯离子渗透至混凝土内部导致钢筋锈蚀是海洋环境下混凝土结构损伤的重要原因。海洋不同腐蚀区域的离子浓度、氧气浓度及海水干湿循环作用时间各不相同,这使得海洋不同腐蚀区域中暴露混凝土的氯离子传输速度和分布规律、钢筋锈蚀产物及锈蚀模式、钢筋锈蚀速率存在显著差异。其中海洋浪溅区和高潮位区域因氧气充足、海水干湿循环作用剧烈及浪溅作用导致钢筋混凝土更易破坏。钢筋锈蚀产物体积是原始体积的2~6倍,持续增加的锈蚀产物将导致混凝土开裂、保护层剥落并进一步加速钢筋锈蚀;考虑钢筋非均匀锈蚀、锈蚀产物填充效应、钢筋及混凝土性能的钢筋混凝土锈胀开裂模型将更加精确。根据海洋不同腐蚀区带特点、钢筋混凝土性能及受荷情况,建立不同腐蚀区域中混凝土的氯离子传输模型,钢筋锈蚀速率模型和混凝土锈胀开裂模型有助于准确预测海洋环境下钢筋混凝土的服役寿命。
通过对混凝土中钢筋锈蚀的检测与监测有助于实时了解混凝土的服役状态。采用线性极化、电化学噪声和电化学阻抗谱等电化学方法可以较好地检测钢筋锈蚀状态、获得混凝土中钢筋的锈蚀速率。基于电化学原理开发的阳极梯和环形电极、基于钢筋锈胀应力测试的光纤监测技术以及基于数字图像技术获得混凝土中钢筋锈蚀应力应变场,有助于实现对混凝土中钢筋锈蚀的监测,并且部分已应用于海洋工程。相比于普通钢筋,锈蚀钢筋的导电率和导磁率均显著降低,采用电磁感应原理开发钢筋锈蚀装置实现了暴露在海水中的普通钢筋和耐蚀钢筋磁通量变化值与钢筋质量损失线性关系的建立。这也为更精确监测混凝土中钢筋锈蚀全过程、实现混凝土中钢筋锈蚀源定位及损伤程度识别提供可能。因此,综合利用氯离子、pH微电极等实现混凝土内部微环境监测,开发先进的钢筋锈蚀监测传感器实现混凝土中钢筋锈蚀源和锈蚀速率监测,通过图像监测技术实现钢筋锈蚀诱导混凝土开裂过程监测。综合上述措施将实现对钢筋混凝土结构腐蚀的全过程监测,并为海洋钢筋混凝土服役寿命预测模型的验证与修正提供依据,同时为海洋环境混凝土的耐久性评估系统提供预警机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李哲
金祖权
邵爽爽
徐翔波
关键词:  混凝土  钢筋  锈蚀  监测    
Abstract: In 2014, the loss caused by corrosion in China was about 2 127.8 billion RMB, accounting for 3.34% of the country's GDP. The penetration of chloride ions into the concrete in marine environment leads to the corrosion of reinforced bars, which is the most crucial factor damaging the structures of concrete. Exposed concrete in diverse marine corrosive areas vary in the chloride ion transport velocity and distribution principle, corrosion rate and pattern as well as corrosion products of reinforcement in virtue of the different ion concentration, oxygen concentration and wet-dry cycling time. Among them, reinforced concrete in splash-zone and high-tide area is prone to be vulnerable due to the sufficient-oxygen supply, drastic wet-dry cycling, and splashing effect. The volume of corrosion products are 2—6 times of the original's, meanwhile, continuous increasing of corrosion products will lead to concrete cracking, protective layer peeling and further accelerate the corrosion of reinforcement. The corrosion-induced cracking model of reinforced concrete will be more precise by considering non-uniform corrosion, filling effect of corrosion products, properties of reinforcement and concrete. Moreover, it will be more efficient to predict the service-life span of reinforced concrete exposed to diverse corrosive zones inmarine environment by establishing models of chloride ion transportation, reinforcement corrosion rate and corrosion-induced cracking according to the characteristics of diverse corrosive zones in the ocean, the properties of reinforced concrete as well as the load level.
The detection and monitoring of reinforcement corrosion in concrete contribute to acquire the information of concrete service status in real time. The corrosion state and ratio of reinforcement can be measured via electrochemical methods such as linear polarization, electrochemical noise and electrochemical impedance spectroscopy. The electrochemical anode ladder and circular electrode develops on the basis of the electrochemical principle, the fiber monitoring technology base on rust expansion stress test of reinforcement and digital image technology for stress and strain distribution monitoring in concrete are also innovated, achieving in the corrosion monitoring of reinforcement, and have been partially adopted in ocean engineering. Corroded reinforcement has a significant reduction in the electrical conductivity and magnetic permeability compared with the original one. The establishment of the linear relationship between the magnetic flux variation and mass loss for both common and the corrosion-resistant reinforcement was attributed to the development of the corrosion monitoring apparatus utilizing the electromagnetic induction theory, which provides a possibility for more accurately monitoring the whole process of reinforcement corrosion in concrete, and realizing the location of corrosion source as well as identifying the damage degree. Therefore, comprehensive utilization of micro-electrode on chloride ion and pH can realize the internal of concrete micro-environment monitoring, and the advanced corrosion monitoring sensors and digital image monitoring technique can realize the corrosion source and rate monitoring, as well as the corrosion-induced cracking process. Hence, multiple applications of above-mentioned techniques are capable of satisfying the entire corrosion process monitoring, which provide the verification basis and correction of the reinforced concrete service life prediction model and a pre-warning mechanism for durability evaluation system in marine environment.
Key words:  concrete    reinforcement    corrosion    monitoring
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  TU528.1  
基金资助: 国家重点研发计划(2017YFB0310000); 国家自然科学基金(51678318)
作者简介:  李哲:男,1990年生,博士研究生,研究方向为海洋环境混凝土耐久性 E-mail:lizhequt@163.com;金祖权:通信作者,男,1977年生,博士,教授,博士研究生导师,研究方向为海洋环境混凝土耐久性及高性能混凝土制备技术 E-mail:jinzuquan@126.com
引用本文:    
李哲, 金祖权, 邵爽爽, 徐翔波. 海洋环境下混凝土中钢筋锈蚀机理及监测技术概述[J]. 材料导报, 2018, 32(23): 4170-4181.
LI Zhe, JIN Zuquan, SHAO Shuangshuang, XU Xiangbo. A Review on Reinforcement Corrosion Mechanics and Monitoring Techniques in Concrete in Marine Environment. Materials Reports, 2018, 32(23): 4170-4181.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.019  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4170
1 Noritaka Y, Tetsuya U, Toshiyuki T, et al.An accurately controllable imitative stress corrosion cracking for electromagnetic nondestructive testing and evaluations[J].Nuclear Engineering and Design,2012,245(3):1.
2 Li Y T, Hou B R.Simulation test apparatus for marine corrosion[J].Chinese Journal of Oceanology and Limnology,1999,17:49.
3 Wang J, Hou B R.Characteristics of the oxygen reduction in atmospheric corrosion[J].Chinese Journal of Oceanology and Limnology,1997,15:36.
4 Hou B R, Sun H Y, Zhang J L, et al.Analysis of corrosive environmental factors of seabed sediment[J].Bulletin of Materials Science,2001,24:253.
5 Bai W F.Study on damage mechanism of concrete and mechanical property of saturated concrete[D]. Dalian: Dalian University of Technology,2008(in Chinese).
白卫峰. 混凝土损伤机理及饱和混凝土力学性能研究[D].大连:大连理工大学,2008.
6 Zhao Y X, Karimi A R, Wong H S, et al.Comparison of uniform and non-uniform corrosion induced damage in reinforced concrete based on a Gaussian description of the corrosion layer[J]. Corrosion Science,2011,53:2803.
7 Jin W L, Zhao Y X, Yan F.The mechanism of corroded expansion force of reinforced concrete members[J].Journal of Hydraulic Engineering,2001,7(7):57(in Chinese).
金伟良,赵羽习,鄢飞.钢筋混凝土构件的均匀钢筋锈胀力的机理研究[J].水利学报,2001,7(7):57.
8 Jin Z Q, Zhao T J, Zhuang Q C, et al.Chloride transport in spitting cracked concrete at marine tidy zone[J].Journal of Civil Architectural & Environmental Engineering,2012,34(2):52(in Chinese).
金祖权,赵铁军,庄其昌,等.劈裂裂缝混凝土在海洋潮汐区的氯离子传输[J].土木建筑与环境工程,2012,34(2):52.
9 Lu C H, Zhao Y X, Jin W L.Modeling of time to corrosion induced cover cracking in reinforced concrete structures[J].Journal of Buil-ding Structures,2010,31(2),85(in Chinese).
陆春华,赵羽习,金伟良.锈蚀钢筋混凝土保护层锈胀开裂时间的预测模型[J].建筑结构学报,2010,31(2):85.
10 Wang X L.Corrosion damage of RC structures ingress by chloride[D].Dalian: Dalian University of Technology,2008(in Chinese).
王显利. 氯离子侵蚀的钢筋混凝土结构锈蚀损伤[D].大连:大连理工大学,2008.
11 Zhang L W.Research on concrete damage detection by using acoustic emission technology[D].Dalian:Dalian Maritime University,2012(in Chinese).
张力伟. 混凝土损伤检测声发射技术应用研究[D].大连:大连海事大学,2012.
12 Jin W L, Xia J, Jiang A Y, et al.Flexural capacity of corrosion-damaged RC beams[J]. China Civil Engineering Journal,2009,42(11):64(in Chinese).
金伟良,夏晋,蒋遨宇,等.锈蚀钢筋混凝土梁受弯承载力计算模型[J].土木工程学报,2009,42(11):64.
13 Yang X M.Research on performance monitoring system and damage identification method for civil engineering structures[D].Tianjin: Tianjin University,2006(in Chinese).
杨晓明. 土木工程结构的性能监测系统与损伤识别方法研究[D].天津:天津大学,2006.
14 Shen J Z, Li Z J, Zhang Z Y.Nondestructive testing techniques and their applications in civil engineering[J]. Nondestructive Testing,2000,22(11):497(in Chinese).
沈建中,李宗津,张之勇.土木工程中的无损检测技术及其应用[J].无损检测,2000,22(11):497.
15 Hou B R, Li X G, Ma X M, et al.The cost of corrosion in China[J]. Materials Degradation,2017,1(4):1.
16 Li Y T, Hou B R.Impedance characteristics of carbon steel under cathodic protection[J].Chinese Journal of Oceanology and Limnology,1998,16(1):60.
17 Zhao Y X, Dai H, Ren H Y, et al.Experimental study of the modulus of steel corrosion in a concrete port[J].Corrosion Science,2012,56:17.
18 Polar A, Indacochea J E, Wang M L.Sensing creep evolution in 410 stainless steel by magnetic measurements[J].Journal of Engineering Materials and Technology,2010,132(25):63.
19 Gotoh Y, Hirano H, Nakano M, et al.Electromagnetic nondestructive testing of rust region in steel[J].IEEE Transactions on Magne-tics,2005,41(10),3616.
20 Smart N R, Rance A P, Nixon D J, et al.Summary of studies on the anaerobic corrosion of carbon steel in alkaline media in support of the Belgian super container concept[J].Corrosion Engineering, Science and Technology,2017,52,217.
21 Li Y T, Hou B R.Study on rust layers on steel in different marine corrosion zone[J]. Chinese Journal of Oceanology and Limnology,1998,16(3):231.
22 Yohei T, Eiichiro M, Shigeru S, et al.In-situ X-ray diffraction of corrosion products formed on iron surfaces[J].Materials Transactions,2005,46(3):637.
23 Zhao Y X, Dai H, Jin W L.A study of the elastic moduli of corrosion products using nano-indentation techniques[J].Corrosion Science,2012,65:163.
24 Zhao Y X, Hu B Y, Yu J, et al.Non-uniform distribution of rust layer around steel bar in concrete[J].Corrosion Science,2011,53:4300.
25 Jin W L, Zhao Y X.Effect of corrosion on bond behavior and bending strength of reinforced concrete beams[J].Journal of Zhejiang University,2001,2(3):298.
26 Pei H F, Li Z J, Zhang J R, et al.Performance investigations of reinforced magnesium phosphate concrete beams under accelerated corrosion conditions by multi techniques[J].Construction and Buil-ding Materials,2015,93:989.
27 金伟良,赵羽习.混凝土耐久性设计[M].北京:科学出版社,2013.
28 Jin W L, Xia J, Jiang A Y, et al.Flexural capacity of corrosion da-maged RC beams[J].China Civil Engineering Journal,2009,42(11):64.
29 Jin W L, Zhou Z D, Mao H H, et al.Experimental study on magnetic field distribution in the fatigue process of corroded steel bars[J].The Ocean Engineering,2016(5):65(in Chinese).
金伟良,周峥栋,毛江鸿,等.锈蚀钢筋在疲劳荷载作用下压磁场分布研究[J].海洋工程,2016(5):65.
30 Li Y, Yu P C.Review of the research on steel corrosion detection and evaluation methods[J].The World of Building Materials,2015,5:121.
31 Zhao Y X.State-of-art of corrosion-induced cracking of reinforced concrete structures[J].Journal of Southeast University,2013,43(5):35.
32 Lu Y Y, Zhang J R, Li Z J, et al.Corrosion monitoring of reinforced concrete beam using embedded cement-based piezoelectric sensor[J].Magazine of Concrete Research,2013,65(21):1265.
33 Jin Z Q, Zhao X, Zhao T J, et al.Effect of Ca(OH)2, NaCl, and Na2SO4 on the corrosion and electrochemical behavior of rebar[J].Chinese Journal of Oceanology and Limnology,2017,35(3):681.
34 Apostolopoulos C A, Demis S, Papadakis V G.Chloride-induced corrosion of steel reinforcement mechanical performance and pit depth analysis[J].Measurement,2013,38:139.
35 Jin Z Q, Zhao X, Zhao T J, et al.Corrosion behavior of steel bar and corrosive cracking of concrete induced by magnesium-sulfate-chloride ions[J].Journal of Advanced Concrete Technology,2016,14:172.
36 Jin Z Q, Zhao X, Zhao T J, et al.Interaction between compressive load and corrosive-ion attack on reinforced concrete with accelerated potentiostatic corrosion[J].Construction and Building Materials,2016,113(15):805.
37 Jin Z Q, Zhao X, Zhao T J, et al.Corrosion and 3D crack-propagation behaviors in reinforced concrete subjected to bending load in simulated marine environment[J].International Journal of Electrochemical Science,2016,11:8779.
38 Hussain R R.Effect of moisture variation on oxygen consumption rate of corroding steel in chloride contaminated concrete[J].Cement and Concrete Composites,2011,33:154.
39 Michel A, Nygaard P V, Geiker M R.Experiment investigation on the short-term impact of temperature and moisture on reinforcement corrosion[J].Corrosion Science,2013,72:26.
40 Ahmed A T, Muhammad N S H. Mechanical properties of reactive powder concrete containing industrial and waste steel fibres at diffe-rent ratios under compression[J].Construction and Building Mate-rials,2017,145:1024.
41 Jin W L, Zhou Z D, Mao H H, et al.Experimental study on magnetic field distribution in the fatigue process of corroded steel bars[J].The Ocean Engineering,2016,5:65.
42 Li F M, Li Z J.Continuum damage mechanics based modeling of fiber reinforced concrete in tension[J].International Journal of Solids and Structures,2001,38(5):777.
43 Lu C H, Jin W L, Liu R G.Probabilistic lifetime assessment of marine reinforced concrete with steel corrosion and cover cracking[J].China Ocean Engineering,2011,25(2):305.
44 Lu C H, Zhao Y X, Jin W L.Modeling of time to corrosion induced cover cracking in reinforced concrete structures[J].Journal of Buil-ding Structures,2010,32(2):85.
45 Zhao Y X, Yu J, Jin W L.Damage analysis and cracking model of reinforced concrete structures with rebar corrosion[J].Corrosion Science,2011,3:3388.
46 Feng R, Yuan Y S, Zhu H, et al.Research on corroded expansion force of the concrete reinforced bar[J].Journal of Xuzhou Institute of Technology,2008,23(4):5.
47 Zhang J R, Lu Y Y, Lu Z Y, et al.A new smart traffic monitoring method using embedded cement-based piezoelectric sensors[J].Smart Materials Structure,2015,24(2):1.
48 Zhang J R, Ma H Y, Yan W J, et al.Defect detection and location in switch rails by acoustic emission and lamb waves analysis: A feasibility study[J].Application Acoustic,2016,105(1):67.
49 Wang L, Wang B W, Weng L, et al.Design and modeling of high-sensitivity fiber magnetic field sensor[J].Chinese Journal of Scientific Instrument,2012,6:1281.
50 Chen D X, Pan M C, Luo F L, et al.High accuracy magnetic field measurement methods based on hall sensor[J].Journal of Transducer Technology,2004,23(2):59.
51 Zhang J R, Fan T Y, Ma H Y, et al.Monitoring setting and harde-ning of concrete by active acoustic method: Effects of water-to cement ratio and pozzolanic materials[J].Construction and Building Materials,2015,88:118.
52 Huang Y, Yang L G, Xu Y Z, et al.A novel system for corrosion protection of reinforced steels in the underwater zone[J]. Corrosion Engineering, Science & Technology,2016,51(8):566.
53 Liu W, Wang D, Chen W, et al.Electrochemical noise monitoring of sulfate corrosion for nickel alloy 718[J].Corrosion Engineering, Science & Technology,2016,51(7):545.
54 Caines S, Khan F, Zhang Y, et al.Simplified electrochemical potential noise method to predict corrosion and corrosion rate[J].Journal of Loss Prevention in the Process Industries,2017,42:72.
55 Shi J J, Sun W.Equivalent circuits fitting of electrochemical impe-dance spectroscopy for corrosion of reinforcing steel in concrete[J].Corrosion Science and Protection Technology,2011,23(5):387(in Chinese).
施锦杰,孙伟.等效电路拟合钢筋锈蚀行为的电化学阻抗谱研究[J].腐蚀科学与防护技术,2011,23(5):387.
56 Shi J J, Sun W.Models for corrosion rate of steel in concrete—A short review[J].Journal of the Chinese Ceramic Society,2012,40(4):620.
施锦杰,孙伟.混凝土中钢筋腐蚀速率模型研究进展[J].硅酸盐学报,2012,40(4):620.
57 Isgor O B, Razaqpur A G.Modelling steel corrosion in concrete structures[J].Material Structure,2006,39(3):291.
58 Dao L T N, Dao V T N, Kim S H. Modeling steel corrosion in concrete structures-part 1: A new inverse relation between current density and potential for the cathodic reaction[J].International Journal of Electrochemical Science,2010,5(3):302.
59 Chang Z T, Cherry B, Marosseky M.Polarisation behaviour of steel bar samples in concrete in seawater. Part 2: A polarisation model for corrosion evaluation of steel in concrete[J].Corrosion Science,2008,50(11):3078.
60 Zhao X F, Gong P, Qiao G F, et al.Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method[J]. Sensors,2011,11(11):10798.
61 Tan C H, Shee Y G, Yap B K, et al.Fiber Bragg grating based sensing system: Early corrosion detection for structural health monitoring[J].Sensors and Actuators A: Physical,2016,246:123.
62 Jiang Y D, Jin Z Q, Zhao T J, et al.Strain field of reinforced concrete under accelerated corrosion by digital image correlation technique[J].Journal of Advanced Concrete Technology,2017,15(12):290.
63 Grattan S K T, Basheer P A M, Taylor S E, et al. Fiber Bragg gra-ting sensors for reinforcement corrosion monitoring in civil enginee-ring structures[J].Journal of Physics: Conference Series,2007,76:12.
64 Shi J J, Sun W.Study of benzotriazole as corrosion inhibitor of reinforcing steel in simulated concrete pore solution[J].Functional Materials,2010,41(12):2147(in Chinese).
施锦杰,孙伟.苯并三唑对模拟混凝土孔溶液中钢筋的阻锈作用[J].功能材料,2010,41(12):2147.
65 Gotoh Y, Hirano H, Nakano M, et al.Electromagnetic nondestructive testing of rust region in steel[J].IEEE Transactions on Magne-tics,2005,41(10):3616.
66 Rumiche F, Indacochea J E, Wang M L.Assessment of the effect of microstructure on the magnetic behavior of structural carbon steels using an electromagnetic sensor[J].Journal of Materials Engineering and Performance,2008,17(4):586.
67 Keiji T, Kousuke M, Daichi H, et al.Magnetic nondestructive test for resistance spot welds using magnetic flux penetration and eddy current methods[J].Journal of Nondestructive Evaluation,2013,32(3):286.
68 Facundo V, Mike Y, Tan J, et al.An overview of major methods for inspecting and monitoring external corrosion of on-shore transportation pipelines[J]. Corrosion Engineering, Science and Technology,2015,50(3):226.
69 Zhang H, Liao L, Zhao R Q, et al.The non-destructive test of steel corrosion in reinforced concrete bridges using a micro-magnetic sensor[J].Sensors,2016,16(9):1.
70 Zhang J R, Liu C, Sun T, et al.An innovative corrosion evaluation technique for reinforced concrete structures using magnetic sensors[J].Construction and Building Materials,2017,135:68.
71 Hong S X, Wiggenhauser H, Helmerich R, et al.Long-term monitoring of reinforcement corrosion in concrete using ground penetra-ting radar[J].Corrosion Science,2017,114:123.
72 Li W J, Xu C H, Ho C M, et al.Monitoring concrete deterioration due to reinforcement corrosion by integrating acoustic emission and FBG strain measurements[J].Sensors (Basel),2017,17(3):656.
73 Sunny A I, Tian G Y, Zhang J, et al.Low frequency (LF) RFID sensors and selective transient feature extraction for corrosion cha-racterization[J]. Sensors and Actuators A: Physical,2016,241:34.
74 Jin J H, Kang Y H, Wu X J, et al.Characteristics of quantitative testing of magnetic leakage flux caused by flaws with integrated Hall elements[J].Nondestructive Testing,1998,20(2):34.
[1] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[2] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[3] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[4] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[5] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[6] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[7] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[8] 丁杨, 周双喜, 董晶亮, 王中平, 郑智秋. 人工智能方法在土木工程监测中的运用[J]. 材料导报, 2019, 33(z1): 274-277.
[9] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[10] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[11] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[12] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[13] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[14] 巩位,余红发,麻海燕,达波. 全珊瑚海水混凝土配合比设计及评价方法[J]. 材料导报, 2019, 33(22): 3732-3737.
[15] 魏子易,安晓鹏,史才军,武斌,元强. 基于CFD模拟的新拌混凝土泵送压力损失预测[J]. 材料导报, 2019, 33(22): 3738-3743.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed