Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4160-4169    https://doi.org/10.11896/j.issn.1005-023X.2018.23.018
  无机非金属及其复合材料 |
水泥生产全过程硫循环机制的研究进展
王俊杰, 房晶瑞, 汪澜
中国建筑材料科学研究总院绿色建筑材料国家重点实验室,北京 100024
The Sulfur Cycle Mechanism in the Whole Process of Cement Manufacturing: a Review
WANG Junjie, FANG Jingrui, WANG Lan
State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024
下载:  全 文 ( PDF ) ( 1699KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 SO2是水泥行业产生的主要大气污染物之一。国内外对水泥行业SO2排放量进行了严格限定。随着劣质原燃材料及替代燃料的大规模使用,更多的硫将被带入水泥生产过程中。这不仅会引起SO2排放水平的增高,而且会加重硫在水泥窑炉内的循环富集,影响窑炉的正常操作,同时对熟料质量产生影响。
水泥生产过程中的硫由原料和燃料带入。其中,部分原料硫在预热器内转变为SO2并随烟气离开,在生料磨和收尘器内被生料部分吸收,并再次进入预热器,形成了硫在预热器和生料磨、收尘器间的低温循环。未转变为SO2的原料硫和燃料硫在水泥窑炉高温环境下形成SO2,并被分解炉内的碱性氧化物吸收,形成硫酸盐进入回转窑,在回转窑烧成区部分硫酸盐发生分解,产生的SO2再次进入分解炉,由此形成了硫在分解炉-回转窑间的高温循环。
围绕水泥生产过程硫的低温循环和高温循环,国内外开展了大量研究。围绕硫的低温循环,首先揭示了水泥生产排放的SO2主要是由原料中硫铁矿和有机硫的氧化反应引起。硫铁矿的氧化温度约为400 ℃,反应产物以FeSX、Fe2O3为主。根据反应条件的差异,硫铁矿氧化机理包括直接氧化和先分解为硫黄铁矿再氧化。在预热器内CaCO3和CaO可吸收部分SO2,其中CaCO3对SO2的吸收为直接硫化反应,反应速率受烟气温度、水分含量、CO2浓度等影响;部分研究者对CaO在预热器内吸收SO2提出争议,认为CaO会优先与CO2反应而影响其对SO2的吸收。生料磨内SO2的吸收效率被认为随烘干温度升高而降低,随原料水分含量增加而提高,固硫产物以CaSO3·1/2H2O为主,其会在生料颗粒表面富集。围绕硫的高温循环,研究结果表明硫酸盐在回转窑内的分解反应受温度、O2浓度、硫碱比等影响。水泥窑协同处置替代燃料时产生的热解气体会显著降低CaSO4的分解温度,促进SO2释放;该现象随着替代燃料粒径的减小、挥发分含量的增加而加剧。熟料中硫的存在形式主要为K2SO4、3K2SO4·Na2SO4、K2SO4·2CaSO4、CaSO4或替换其他物质存在于硅酸盐矿物中,熟料中硫含量的增加会稳定C2S而抑制C3S形成。
本文综述了水泥生产全过程硫的循环机制,聚焦硫的低温和高温循环。围绕硫的低温循环,阐述了生料含硫形式及其检测方法、硫铁矿氧化及SO2释放特性、CaCO3和CaO在预热器环境下对SO2的吸收机理以及粉磨过程生料的固硫作用;围绕硫的高温循环,阐述了硫在水泥窑炉内的挥发与循环机制、替代燃料对硫释放的影响、硫在熟料中的存在形式及对熟料质量的影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王俊杰
房晶瑞
汪澜
关键词:  水泥行业    循环机制    
Abstract: As one of the principal air pollutants produced by cement industry, the SO2 emission levels have been strictly limi-ted all over the word. However, with the mass adoptions of inferior quality raw materials and alternative fuels in the future, more sulfur will be brought into the cement production process. Hence leading to the increase of the SO2 emission level and aggravate the circulation enrichment of sulfur in the cement kiln, which has an impact on the operation of the kiln and the quality of clinker as well.
During the cement production process, SO2 originated from both raw meal and fuel. Among them, part of the sulfur from raw meal was oxidized to SO2 in the preheater system and left with flue gas, then a portion of the SO2 was captured by the raw meal in the grinding and de-dusting system and entered the preheater system again, thus, forming a low-temperature sulfur cycle among the preheater, the raw meal mill and the dust collector. The rest of the sulfur from the raw meal and the fuel was transformed to SO2 in the kiln and calciner under high temperature, and the most of the SO2 was absorbed in the calciner generating the alkali sulfates, afterwards the alkali sulfates would enter the rotary kiln and partially decomposed in the burning zone, the generated SO2 would enter the calciner again and a high-temperature sulfur cycle was established in the kiln and calciner.
Extensive research on low-temperature cycle and high temperature cycle of sulfurt in the cement production process has been devoted at home and abroad. For the relative low-temperature sulfur cycle, the emission of SO2 in the cement production was produced through the oxidation of pyrite and organic sulfur. The oxidation temperature of pyrite begins at about 400 ℃, and the reaction pro-ducts mainly consist of FeSX and Fe2O3. According to the diverse reaction conditions, the oxidation mechanisms of pyrite were classified into the direct oxidation and the reoxidation by thermal decomposition to pyrrhotite first. In the preheater, CaCO3 and CaO absorbed a portion of SO2. The SO2 absorption by CaCO3 belonged to direct sulfuration reaction, whose reaction rate highly depended on the temperature, moisture content and CO2 concentration of the flue gas. Some researches deemed that CaO was prior to react with CO2 in the preheater circumstance, which would affect the absorption of SO2. The absorption efficiency of SO2 in the raw meal mill was considered to decrease with the increasing drying temperature or decreasing moisture content of the raw material particles. The reaction product was dominated by CaSO3·1/2H2O, which would form an enrichment on the surface of the raw meal particles. For the relative high-temperature sulfur cycle, the studies indicated that the temperature, O2 concentration, and sulfur/alkali ratio played a pivotal role in the decomposition reaction of sulfate in the rotary kiln. The pyrolysis gas generated when the cement kiln co-disposes the alternative fuel would significantly reduce the decomposition temperature of CaSO4 and promote the release of SO2, which would aggravate with the decrease of the size of alternative fuel and the increase of volatile matter content. The sulfur contained in the clinker was mainly in the form of K2SO4、3K2SO4·Na2SO4、K2SO4·2CaSO4、CaSO4, and other substances in the silicate minerals, wherein increasing the sulfur content in the clinker would stabilize the C2S and inhibite the formation of C3S.
This paper reviews the cycle mechanisms of sulfur in the whole process of cement production and emphases the low-temperature and high-temperature cycle of sulfur. Revolving round the low-temperature cycle of sulfur, the writer detailedly expounds the sulfur-containing form of raw meal and its detection methods, the oxidation of pyrites and the characteristics of releasing the SO2, the absorption mechanism of CaCO3 and CaO in the preheater environment, and the sulfur fixation of the raw meal in the grinding process, respectively. Furthermore, the writer elaborates the volatilization and circulation mechanism of sulfur in the cement kiln, the in-fluence of alternative fuels on sulfur release, the form of sulfur in the clinker and its effects on the quality of clinker on the high-temperature cycle of sulfur.
Key words:  cement industry    sulfur    looping mechanism
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  TU522.064  
  TB321  
基金资助: 国家重点研发计划(2017YFC0210801)
作者简介:  王俊杰:男,1989年生,博士研究生,工程师,研究方向为水泥窑炉节能减排技术 E-mail:cbmawangjunjie@163.com;王澜:通信作者,男,1959年生,博士研究生导师,教授,研究方向为水泥生产新工艺、节能减排新技术
引用本文:    
王俊杰, 房晶瑞, 汪澜. 水泥生产全过程硫循环机制的研究进展[J]. 材料导报, 2018, 32(23): 4160-4169.
WANG Junjie, FANG Jingrui, WANG Lan. The Sulfur Cycle Mechanism in the Whole Process of Cement Manufacturing: a Review. Materials Reports, 2018, 32(23): 4160-4169.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.018  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4160
1 Bref C L M. Reference document on best available techniques in the cement, lime and magnesium oxide manufacturing industries[R].Seville: European IPPC Bureau,2010.
2 Nielsen P B, Jepsen O L.An overview of the formation of SOx and NOx in various pyroprocessing systems[C]∥IEEE Cement Industry Technical Conference. Jacksonville,2002:255.
3 Bech C, Gundtoft L.Study of NOx, SOx and CO mechanisms based on actual plant data[C]∥IEEE/PCA Cement Industry Technical Conference. Rapid City,1998:141.
4 Goldmann W, Kreft W, Schütte R.Cyclic phenomena of sulfur in cement kilns[J].World Cement Technology,1981,11(12):424.
5 Li X Y, Hu Z J, Ye X C, et al.The technology of desulfurization and SO2 emission control in cement production process[J].Cement,2010(6):16(in Chinese).
李小燕,胡芝娟,叶旭初,等.水泥生产过程自脱硫及SO2排放控制技术[J].水泥,2010(6):16.
6 Horkoss S.Reducing the SO2 emission from a cement kiln[J].International Journal of Natural and Social Science,2008,1(1):7.
7 Li X Y, Hu Z J, Ye X C, et al.Analysis of the cause of excessive discharge of SO2 in the cement plant[J].Cement,2010(10):9(in Chinese).
李小燕,胡芝娟,叶旭初,等.水泥厂SO2排放超标的原因分析[J].水泥,2010(10):9.
8 Mut M D M C. Sulfur release during alternative fuels combustion in cement rotary kilns[D].Denmark: Technical University of Denmark,2014.
9 Miller B F M, Young G L, Seebach M V. Formation and techniques for control of sulfur dioxide and other sulfur compounds in Portland cement kiln systems[R].USA: Research and Development Serial No.2460, Portland Cement Association,2001.
10 Jin Q P.Determination of sulfur content in the raw material of the cement production[J].Cement Engineering,2015,28(6):81(in Chinese).
金巧平. 水泥生产原材料硫含量的测定[J].水泥工程,2015,28(6):81.
11 Zhang Y Z, Wang H F, Yuan X F, et al.Measurement of the total sulfur content in the cement raw material by the barium sulfate gra-vimetric method[J].China Cement,2013(11):78(in Chinese).
张亚珍,王华芳,原秀芳,等.碱熔硫酸钡重量法测水泥生料中全硫[J].中国水泥,2013(11):78.
12 Li J L, Dun L, Gu L.A test study on the cement and its raw mate-rials by the auto-sulfur-fixation instrument[J].Henan Building Mate-rials,2015(5):37(in Chinese).
李筠乐,顿磊,顾蕾.定硫仪用于水泥及其原材料的试验研究[J].河南建材,2015(5):37.
13 Zhang Q, Wang Z L, Chen F.Rapid determination of sulfur trioxide mass fraction in the cement[J].The World of Building Materials,2005,26(5):12(in Chinese).
张清,王志林,陈菲.水泥中三氧化硫质量分数的快速测定[J].国外建材科技,2005,26(5):12.
14 Zhang C F, Zhang S Z.The determination of sulfur trioxide content in the slag cement by combustion-coulomb titration method[J].Cement,1988(6):36(in Chinese).
张春芬,张绍周.燃烧-库仑滴定法快速测定矿渣水泥中三氧化硫的研究[J].水泥,1988(6):36.
15 Hansen J P, Jensen L S, Wedel S, et al.Decomposition and oxidation of pyrite in a fixed-bed reactor[J].Industrial and Engineering Research,2003,42:4290.
16 Li F Z, Jin S R, Yan B.Analysis on the cause of excessive sulfur content in the exhaust gas of cement kiln[J].Cement,2016(8):55(in Chinese).
李福洲,金诗润,颜波.水泥窑尾排烟气中硫含量超标的原因分析[J].水泥,2016(8):55.
17 Boyabat N, Özer A K, Bayrakceken S, et al.Thermal decomposition of pyrite in the nitrogen atmosphere[J].Fuel Processing Technology,2004,85(2):179.
18 Lambert J M, Simkovich G, Waker P L.The kinetics and mechanism of the pyrite-to-pyrrhotite transformation[J].Metallurgical and Mate-rials Transactions B,1998,29(2):385.
19 Toulmin P, Barton P B.A thermodynamic study of pyrite and pyrrhotite[J].Geochimica Et Cosmochimica Acta,1964,28(5):641.
20 Hu G L, Johansen K D, Wedel S, et al.Decomposition and oxidation of pyrite[J].Progress in Energy and Combustion Science,2006,32(3):295.
21 Hong Y, Jr B F.The kinetics and mechanism of pyrite thermal decomposition[J].Berichte der Bunsengesellschaft für Physikalische Chemie,1997,101(12):1870.
22 Mccarty K F, Hamilton J C, Boehme D R, et al.In situ Raman spectroscopy of high temperature pyrite reactions related to deposit formation from coal[J].Journal of the Electrochemical Society,1989,136(4):1223.
23 Pelovski Y, Petkova V.Investigation on thermal decomposition of pyrite Part Ⅰ[J].Journal of Thermal Analysis and Calorimetry,1999,56(1):95.
24 Hausen D M.Reversible reactions between pyrite and pyrrhotite in SO2[J].Review of Extractive Metallurgy,1991,4:31.
25 Seidler T, Hoenig Y.Investigations into the formation and reduction of raw-material-derived SO2 emissions in the cement industry[J].Cement International,2002,1,67.
26 Jorgensen F R A, Moyle F J. Phases formed during the thermal analysis of pyrite in air[J].Journal of Thermal Analysis,1982,25(2):473.
27 Salmento J S, Shenk R E.Accurately predicting cement plant emissions[C]∥IEEE-IAS/PCA Cement Industry Technical Conference. Chattanooga,2004:333.
28 Hu G, Dam-Johansen K, Wedel S, et al.Review of the direct sulfation reaction of limestone[J].Progress in Energy and Combustion Science,2006,32(4):386.
29 Ulerich N H, Newby R A, Keairns D L.A thermogravimetric study of the sulfation of limestone and dolomite-rediction of pressurized and atmospheric fluidized-bed desulfurization[J].Thermochimica Acta,1980,36(1):1.
30 Tullin C, Nyman G, Ghardashkhani S.Direct sulfation of calcium carbonate: The influence of carbon dioxide partial pressure[J].Energy and Fuels,1993,7(4):512.
31 Tétard F, Bernache-Assollant D, Champion E.Pre-eutectic densification of calcium carbonate doped with lithium carbonate[J].Journal of Thermal Analysis and Calorimetry,1999,56(3):1461.
32 Hajaligol M R, Longwell J P, Sarofim A F.Analysis and modeling of the direct sulfation of CaCO3[J].Industrial and Engineering Chemistry Research,1988,27(12):2203.
33 Hu G L.Emission of SO2 from cement production—A study of pyrite transformation and direct sulfation of limestone[D].Denmark: Technical University of Denmark,2007.
34 Snow M J H, Longwell J P, Sarofim A F. Direct sulfation of calcium carbonate[J].Industrial and Engineering Chemistry Research,1988,27(2):268.
35 Hanson C, Tullin C.Sintering of calcium carbonate and lime mud in a carbon dioxide atmosphere[J].Journal of Pulp and Paper Science,1996,22(9):327.
36 Miller S, Hansen J.Methods for reducing SO2 emissions[C]∥IEEE-IAS/PCA 2004 Cement Industry Technical Conference.Chattanooga,2004:79.
37 Yuan F Y.The SO2 emission in the cement manufacturing and the desulphurization effect of the vertical mill[J].China Cement,2016(3):73(in Chinese).
袁凤宇. 水泥生产的SO2排放和立磨制备生料的脱硫作用[J].中国水泥,2016(3):73.
38 Krähner A, Hohmann H.Possible ways of reducing SO2 emissions when raw materials containing sulphides are used in the cement production process, Part 1[J].ZKG International,2001,54(1):10.
39 Krähner A, Hohmann H.Possible ways of reducing SO2 emissions when raw materials containing sulphides are used in the cement production process, Part 2[J].ZKG International,2001,54(3):130.
40 Nielsen A R, Larsen M B, Glarborg P, et al.High temperature release of SO2 from calcined cement raw materials[J].Energy and Fuels,2011,25(25):2917.
41 Bhatty J I, Miller F M, Kosmatka S H, et al.Innovations in Portland cement manufacturing[M].Illinois, USA:PCA,2004.
42 Horkoss S.OPC clinker with high SO3[J].World Cement,2004,1:71.
43 Clark. Petcoke and Nodulisation[J].International Cement Review,2003,4:39.
44 Léné J C.High sulfur fuels-fired for action![J].World Cement,2001,12:28.
45 Steuch H E, Johansen V.Sulfur dioxide emission from cement kilns[C]∥Rock Product International Seminar,USA,1990:1.
46 Mortensen A H, Hintsteiner E A, Rosholm P.Converting two kiln lines to 100% high sulphur petroleum coke firing[J].ZKG Internatio-nal,1998,51(4):184.
47 Bhatty J I.Role of minor elements in cement manufacture and use[R].Skokie: Portland Cement Association,1995.
48 Jawed I, Skalny J.Alkalies in cement: A review Ⅰ. Forms of alkalies and their effect on clinker formation[J].Cement and Concrete Research,1977,7(6):719.
49 Newkirk T F.Effect of SO3 on the alkali compounds of Portland cement clinker[J].Journal of Research of the National Bureau of Stan-dards,1951,47(5):349.
50 Fortsch D S.The effects of excess sulfur on clinker properties[C]∥IEEE-IAS/PCA Cement Industry Technical Conference. Chattanooga,2004:103.
51 Chen Y D, Chen L, Zhen D X, et al.Effect of sulfur on the calcination of cement clinker, Part Ⅰ[J].Cement Technology,2016(5):23(in Chinese).
陈友德,程亮,郑德喜,等.硫对水泥熟料煅烧的影响(上)[J].水泥技术,2016(5):23.
52 Chen Y D, Chen L, Zhen D X, et al.Effect of sulfur on the calcination of cement clinker, Part Ⅱ[J].Cement Technology,2016(6):23(in Chinese).
陈友德,程亮,郑德喜,等.硫对水泥熟料煅烧的影响(下)[J].水泥技术,2016(6):24.
53 Twomey C, Birkinshaw C, Breen S.The identity of the sulfur-containing phases present in cement clinker manufactured using a high sulfur petroleum coke fuel[J].Journal of Chemical Technology and Biotechnology,2004,79(5):486.
54 WBCFS Development.Cement technology roadmap 2009: Carbon emission reductions up to 2050[M].Geneva: Atar Roto Presse SA,2009:9.
55 Nørskov L K.Combustion of solid alternative fuels in the cement kiln burner[D].Denmark: Technical University of Denmark,2012.
56 Nielsen A R.Combustion of large solid fuels in cement rotary kilns[D].Denmark: Technical University of Denmark,2012.
57 Bao Q L, Li L L.Optimize the technological measures to achieve the SOx emission reduction[J].China Cement,2017(2):81(in Chinese).
包勤立,李莉莉.优化工艺措施,实现水泥窑SOx减排[J].中国水泥,2017(2):81.
58 Wheelock T D, Boylan D R.Reductive decomposition of gypsum by carbon monoxide[J].Industrial and Engineering Chemistry,1960,52(3):215.
59 Hansen J P.SO2 emissions from cement production[D].Denmark: Technical University of Denmark,2003.
60 Mut M D M C, Nørskov L K, Glarborg P, et al. SO2 release as consequence of alternative fuels combustion in cement rotary kiln inlets[J].Energy and Fuels,2015,29(4):2729.
61 Miller F M, Tang F J.The distribution of sulfur in present-day clin-kers of variable sulfur content[J].Cement and Concrete Research,1996,26(12):1821.
62 Taylor H F W. Distribution of sulfate between phases in Portland cement clinkers[J].Cement and Concrete Research,1999,29:1173.
63 Uda S, Asakura E, Nagashima M.Influence of SO3 on the phase relationship in the system CaO-SiO2-Al2O3-Fe2O3[J].Journal of the American Ceramic Society,1998,81(3):725.
64 Farag L M, Kamel H M.Effect of high intakes of chlorine, sulfur and alkalis on cement kiln operation[J].ZKG international,1994,47:586.
[1] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[2] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[3] 孙福洋, 杨旭, 曹博. SRB+IOB对X100管线钢在鹰潭土壤模拟溶液中腐蚀行为的影响[J]. 材料导报, 2019, 33(z1): 373-376.
[4] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[5] 胡文龙, 刘赞群, 裴敏. 引气剂对硫铝酸盐水泥混凝土硫酸盐结晶破坏的影响[J]. 材料导报, 2019, 33(z1): 239-243.
[6] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[7] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[8] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[9] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[10] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[11] 龚跃球,石晓宇,李京兵,谢淑红. 热力学计算指导下改进CVD法制备大面积薄层MoS2[J]. 材料导报, 2019, 33(22): 3708-3711.
[12] 王家滨, 牛荻涛. 盐湖卤水侵蚀喷射混凝土衬砌损伤演化[J]. 材料导报, 2019, 33(20): 3426-3435.
[13] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[14] 党力, 李宛琴, 吕智慧, 胡杰林, 次旺拉姆, 刘威. 溶液共混法制备碱式硫酸镁晶须/聚丙烯复合材料及其力学性能[J]. 材料导报, 2019, 33(18): 3135-3139.
[15] 岳承军, 余红发, 麻海燕, 章艳, 梅其泉, 达波. 全珊瑚海水混凝土动态冲击性能试验研究[J]. 材料导报, 2019, 33(16): 2697-2703.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed