Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 761-769    https://doi.org/10.11896/cldb.201905006
  无机非金属及其复合材料 |
亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展
孙淑红1, 朱艳1, 青红梅1, 胡永茂2, 杨斌3
1 昆明理工大学材料科学与工程学院,昆明 650093;
2 大理大学工程学院,大理 671003;
3 昆明理工大学真空冶金国家工程实验室,昆明 650093
Synthesis of Metastable Phase Wurtzite Copper Zinc Tin Sulfide (WZ-CZTS)Nanocrystals and Their Photovoltaic Applications: a Review
SUN Shuhong1, ZHU Yan1, QING Hongmei1, HU Yongmao2, YANG Bin3
1 Faculty of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093;
2 Faculty of Engineering, Dali University, Dali 671003;
3 The National Engineering Laboratory for Vacuum Metallurgy,Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 3564KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 直接带隙半导体化合物铜锌锡硫(Cu2ZnSnS4,CZTS) 具有光吸收系数高、组成元素安全无毒且含量丰富、光电性能优异等优势,是发展绿色、低成本、高效率薄膜太阳电池的理想核心材料。前期的研究主要集中于锌黄锡矿相(Kesterite-type,KT-CZTS)在CZTS基薄膜太阳能电池中的应用。随着研究的深入,CZTS的光电转换效率取得了重大突破,但是距离其理论预期值-32.2%的光电转换效率仍然存在很大的差距。2011年制备出的纤锌矿相(Wutzite-type,WZ-CZTS),与KT-CZTS和黄锡矿相(Stannite-type,ST-CZTS)相比,其具有更高的载流子浓度和更低的电阻率,因此其在光伏器件中具有很大的潜在应用价值。
然而,WZ-CZTS是一种亚稳相,当外界条件发生变化时,它很容易转变为稳定态结构的KT-CZTS。此外,化学计量比的少量偏离,就极易产生二元或三元等化合物杂相,因此如何减少和控制杂相的生成,制备出纯相、形貌可控的WZ-CZTS纳米晶体并将之应用于薄膜太阳能电池显得至关重要。最近几年,研究者们除了研究WZ-CZTS对器件性能的影响外,主要从选择合适的制备方法以及与之有关的有机溶剂、硫源、前驱体配比和优化薄膜制备工艺方面不断尝试,并取得了丰硕的成果。在充分发挥WZ-CZTS高的载流子浓度优势的同时大幅提升了器件效率。目前,以WZ-CZTS为薄膜太阳能电池吸收层材料制备的太阳能电池的转换效率已从最初的2.44%快速提高到6.0%。
WZ-CZTS粉体的制备最初主要采用热注入法,但此法制备过程复杂、所用设备较为昂贵,且反应温度较高(≥240 ℃)。近两年,研究者们引入一锅法制备WZ-CZTS粉体,该法具有反应温度低、不需要惰性气体保护、工艺流程简单的优点,为WZ-CZTS粉体的大规模工业生产提供了可能。目前,WZ-CZTS作为太阳能电池吸收层薄膜的制备方法主要为纳米晶体油墨涂覆法,该法具有结晶度较好、缺陷少、工艺相对简单、制备成本低、易于实现规模化生产的优点,引起了国内外学者的广泛关注。
本文对WZ-CZTS材料的结构特性、制备工艺、光电性质及应用进行了综述,重点分析了溶剂、硫源、前驱体等因素对其物相和形貌的影响。同时,对WZ-CZTS在光伏领域的应用进行了探讨。最后对WZ-CZTS目前存在的挑战和今后的研究方向进行总结,展望了其未来可能的突破方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙淑红
朱艳
青红梅
胡永茂
杨斌
关键词:  铜锌锡硫  纤锌矿  制备工艺  光伏应用  薄膜太阳电池    
Abstract: The direct bandgap semiconductor compound copper zinc tin sulphide (Cu2ZnSnS4, CZTS) is an ideal core for the development of green, low-cost, high-efficiency thin-film solar cells due to their high optical absorption coefficient, safe and non-toxic components, rich content as well as excellent photoelectric performance. In the early stage, the research was mainly focused on the application of zinc-tin-tin phase (kesterite-type, KT-CZTS) in CZTS-based thin-film solar cells. With the deepening of the research, a major breakthrough has been made in the the photoelectric conversion efficiency, yet there is still a big gap between its theoretical expected vaule -32.2%. The wurtzite-type (WZ-CZTS) prepared in 2011 exhibited a higher carrier concentration and a lower resistivity than the KT-CZTS and stannite-type (ST-CZTS), therefore it has a great potential for application in photovoltaic devices.
However, WZ-CZTS is attributed to a metastable phase, which is easy to transform into a stable structure-KT-CZTS when the external conditions change. Besides, a small deviation of the stoichiometric ratio is inclined to produce binary or ternary compound heterophases, thus reduce the formation of heterophases, and prepare the pure , morphology-controlled WZ-CZTS nanocrystals are crucial as well as apply them in thin film solar cells. In recent years, except for investigating the effects of WZ-CZTS on device performance, researchers have been continuously attempting to search for a suitable preparation methods and related organic solvents, sulfur sources, precursor ratios, and optimized thin film preparation processes. And so far fruitful results have been achieved. The device efficiency is drastically improved while the high carrier concentration advantage of WZ-CZTS is fully utilized. At present, the conversion efficiency of solar cells prepared by using WZ-CZTS as the thin film solar cell absor-ber layer has rapidly increased from the initial 2.44% to 6.0%.
Initially the preparation of WZ-CZTS powder mainly adopted hot injection method, while the complex preparation process, expensive equipment and high reaction temperature (≥240 ℃) restricted its widely application. In the past two years, researchers introduced one-pot method to prepare WZ-CZTS powder. This method has a series of merits including low reaction temperature, no need for inert gas protection and simple process flow, thus making it possible for large-scale industrial production of WZ-CZTS powder. At present, the nano-crystal ink coating method is mainly used for preparing WZ-CZTS solar cell absorber layer film, which has a good crystallinity, fewer defects, relatively simple process, low preparation cost and easy realization of large-scale production,and has attracted widespread attention.
In this paper, the structural characteristics, preparation process, photoelectric properties and application of WZ-CZTS are reviewed. The effects of solvent, sulfur source and precursor on the phase and morphology are highlighted. In addition, the application of WZ-CZTS in photovoltaic field is discussed. Finally, it summarizes the current challenges and future research directions of WZ-CZTS and looks forward to possible future breakthroughs.
Key words:  Cu2ZnSnS4    wurtzite    preparation process    photovoltaic applications    thin film solar cells
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  O649  
  O649.4  
  TM914.4+2  
基金资助: 国家自然科学基金(61764010;11564002);昆明理工大学引进人才基金(KKSY201551052)
作者简介:  杨斌,工学博士,教授,博士研究生导师,昆明理工大学副校长,云南省中青年学术和技术带头人。先后主持或参加各类研究项目40余项,获国家技术发明二等奖1项、省部级科技进步奖多项;获得国家专利20项,出版学术专著7部,发表科研学术论文40余篇。在铟、锂、硒等有色金属的真空提取、提纯等方面具有深厚的理论基础和丰富的产业化实践经验,研究成果应用于工业化生产,累计产值数亿元,取得了显著的经济和社会效益。kgyb@sina.com。孙淑红,2000年7月毕业于昆明理工大学,获得工学学士学位。2015年7月在昆明理工大学取得博士学位。现为昆明理工大学材料科学与工程学院硕士研究生导师。目前主要研究领域为CZTS薄膜太阳能电池材料与器件。
引用本文:    
孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
SUN Shuhong, ZHU Yan, QING Hongmei, HU Yongmao, YANG Bin. Synthesis of Metastable Phase Wurtzite Copper Zinc Tin Sulfide (WZ-CZTS)Nanocrystals and Their Photovoltaic Applications: a Review. Materials Reports, 2019, 33(5): 761-769.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905006  或          http://www.mater-rep.com/CN/Y2019/V33/I5/761
1 Cattley C A, Cheng C, Fairclough S M, et al. Chemical Communications,2013,49(36),3745.
2 Zhang Q, Cao M, Shen J S, et al. Vacuum,2015,122(4),66.
3 Shi L, Yin P. Dalton Transactions,2013,42(37),13607.
4 Kang C C, Chen H F, Yu T C, et al. Materials Letters,2013,96(4),24.
5 Friedlmeier T M, Wieser N, Walter T, et al. In: 1997 Proceedings of the 14th European Photovoltaic Specialists Conference. Barcelona, Spain,1997.
6 Chan C P, Lam H, Surya C. Solar Energy Materials & Solar Cells,2010,94(2),207.
7 Katagiri H, Jimbo K, Maw W S, et al. Thin Solid Films,2009,517(7),2455.
8 Wang W, Winkler M T, Gunawan O, et al. Advanced Energy Materials,2014,4(7),403.
9 Yoo H, Kim J H. Solar Energy Materials & Solar Cells,2011,95(1),239.
10 Lu X, Zhuang Z, Peng Q, et al. Chemical Communications,2011,47(11),3141.
11 Singh A, Geaney H, Laffir F, et al. Journal of the American Chemical Society,2012,134(6),2910.
12 Jiang H, Dai P, Feng Z, et al. Journal of Materials Chemistry,2012,22(15),7502.
13 Regulacio M D, Ye C, Lim S H, et al. Chemistry,2012,18(11),3127.
14 Li M, Zhou W H, Guo J, et al. Journal of Physical Chemistry C,2012,116(50),26507.
15 Luo Q, Zeng Y, Chen L, et al. Chemistry an Asian Journal,2014,9(8),2309.
16 Coughlan C, Ryan K M. Crystengcomm,2015,17(36),6914.
17 Li Z, Lui A L K, Lam K H, et al. Inorganic Chemistry,2014,53(20),10874.
18 Zou Y, Su X, Jiang J. Journal of the American Chemical Society,2013,135(49),18377.
19 Nishi H, Nagano T, Kameyama T, et al. Crystengcomm,2014,17(1),174.
20 Zhou M, Gong Y, Xu J, et al. Journal of Alloys & Compounds,2013,574(2),272.
21 Xie W, Jiang X, Zou C, et al. Physica E: Low-dimensional Systems and Nanostructures,2012,45(29),16.
22 Mou P, Mathews N R, Gonzalez R S, et al. Thin Solid Films,2013,535(1),78.
23 Chen L J, Chuang Y J. Materials Letters,2013,91(2),372.
24 Tian Q, Xu X, Han L, et al. Crystengcomm,2012,14(11),3847.
25 Bahramzadeh S, Abdizadeh H, Golobostanfard M R. Journal of Alloys & Compounds,2015,642,124.
26 Cai Q, Liang X J, Zhong J S, et al. Acta Physico-Chimica Sinica,2011,27(12),2920.
27 Wang L, Wang W, Sun S. Journal of Materials Chemistry,2012,22(14),6553.
28 Tiong V T, Zhang Y, Bell J, et al. Crystengcomm,2014,16(20),4306.
29 Jao M H, Liao H C, Wu M C, et al. Japanese Journal of Applied Physics,2012,51(10),4137.
30 Li C, Cao M, Huang J, et al. Materials Science in Semiconductor Proces-sing,2015,31,287.
31 Hao Z, Zhang Z, Liu S, et al. Materials Letters,2016,183,268.
32 Zhang Z X, Zhou Z J, Bai B, et al. Journal of Nanoparticle Research,2015,17(12),463.
33 Zou Z, Gao Y, Long F, et al. Materials Letters,2015,158,13.
34 Qing H, Zhu Y, Hu Y, et al. Materials Letters,2016,176,177.
35 Zhao Y, Qiao Q, Zhou W H, et al. Chemical Physics Letters,2014,592(4),144.
36 Zhang W, Zhai L, He N, et al. Nanoscale,2013,5(17),8114.
37 Shavel A, Ibáñez M, Luo Z, et al. Chemistry of Materials,2017,28(3),720.
38 Wang J J, Liu P, Ryan K M. Chemical Communications,2015,51(72),13810.
39 Long F, Chi S, He J, et al. Journal of Solid State Chemistry,2015,229,228.
40 Lin Y H, Das S, Yang C Y, et al. Journal of Alloys & Compounds,2015,632,354.
41 Tan J M, Lee Y H, Pedireddy S, et al. Journal of the American Chemical Society,2014,136(18),6684.
42 Ghorpade U V, Suryawanshi M P, Shin S W, et al. Physical Chemistry Chemical Physics,2015,17(30),19777.
43 Li M, Zhou W H, Guo J, et al. Journal of Physical Chemistry C,2012,116(50),26507.
44 Thompson M J, Ruberu T P A, Blakeney K J, et al. Journal of Physical Chemistry Letters,2013,4(22),3918.
45 Liao H C, Jao M H, Shyue J J, et al. Journal of Materials Chemistry A,2012,1(2),337.
46 Zhou B, Xia D, Wang Y. RSC Advances,2015,5(86),70117.
47 Liu X, Zhou F, Song N, et al. Journal of Materials Chemistry A,2015,3(46),23185.
48 Liu X, Huang J, Zhou F, et al. Chemistry of Materials,2016,28,3649.
[1] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[2] 王坤宇, 冯运莉, 柳昆. 纳米复相永磁材料的研究进展[J]. 材料导报, 2019, 33(z1): 116-121.
[3] 左迎峰, 李萍, 屠茹茹, 赵星, 袁光明, 吴义强. 基于响应曲面法优化酸解氧化制备高醛基含量的双醛淀粉的工艺条件[J]. 材料导报, 2019, 33(2): 335-341.
[4] 刘仪柯, 唐雅琴, 蒋良兴, 刘芳洋, 秦 勤, 张 坤. 溅射Cu-Zn-Sn金属预制层后硫(硒)化法制备Cu2ZnSn(SxSe1-x)4薄膜及其光伏特性[J]. 《材料导报》期刊社, 2018, 32(9): 1412-1416.
[5] 成小乐, 尹君, 屈银虎, 符寒光, 赵冰. 连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术[J]. 《材料导报》期刊社, 2018, 32(5): 796-807.
[6] 崔田路, 顾雪, 贾中秋, 尹晓桐, 曹中秋, 张轲. 不同工艺制备的纳米晶Ag-25Ni合金在NaCl溶液中的腐蚀性能[J]. 材料导报, 2018, 32(16): 2798-2802.
[7] 高金凤, 李明慧, 徐键, 方刚. 溶胶-凝胶法制备铜锌锡硫薄膜及其太阳能电池的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 146-151.
[8] 李庆达, 郭建永, 胡军, 王宏立, 连法增, 陆曹卫. 通过改进的制备工艺提高FINEMET纳米晶磁粉芯的磁性能及其机理*[J]. 《材料导报》期刊社, 2017, 31(16): 26-30.
[9] 王延杰, 汝杰, 赵东旭, 王田苗, 沈奇, 陈花玲, 朱灯林. 离子聚合物-金属复合材料(IPMC)的电极界面研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 24-29.
[10] 甘国友, 邹屏翰, 沈韬, 孙淑红, 朱艳. 阳离子部分取代Cu2ZnSnS4的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 10-17.
[11] 刘雨生, 刘雯, 张淑媛, 杨富华, 王晓东. 陷光结构在GaAs薄膜太阳电池中的应用*[J]. 《材料导报》期刊社, 2017, 31(11): 11-19.
[12] 韩 贵, 陆金花, 王 敏, 李丹阳. 溶胶-凝胶法制备铜锌锡硫材料的研究进展[J]. 材料导报, 2017, 31(1): 10-17.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed