Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 24-29    https://doi.org/10.11896/j.issn.1005-023X.2017.015.004
  材料综述 |
离子聚合物-金属复合材料(IPMC)的电极界面研究进展*
王延杰1, 汝杰2, 赵东旭2, 王田苗3, 沈奇3,4, 陈花玲2, 朱灯林1
1 河海大学机电工程学院,常州 213022;
2 西安交通大学机械工程学院,西安 710049;
3 北京航空航天大学机器人研究所,北京 100191;
4 内华达大学拉斯维加斯分校机械工程系,拉斯维加斯 89154-4027;
The State of Art of Electrode Interface of Ionic Polymer-Metal Composites (IPMC)
WANG Yanjie1, RU Jie2, ZHAO Dongxu2, WANG Tianmiao3, SHEN Qi3,4, CHEN Hualing2, ZHU Denglin1
1 School of Mechatronic Engineering, Hohai University, Changzhou 213022;
2 School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049;
3 Institute of Robotics, Beijing University of Aeronautics and Astronautics, Beijing 100191;
4 Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas 89154-4027;
下载:  全 文 ( PDF ) ( 1766KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 离子聚合物-金属复合材料(Ionic polymer-metal composites, IPMC)是一种新型的智能材料,由于其具有良好的机电转换能力且本体柔软,可以制作成多种驱动器和传感器,因而在各个领域中展示出巨大的应用潜力。这种材料的机电性能受多种因素影响,其电极界面是重要影响因素之一。文章回顾了近几年来国内外针对IPMC材料的界面电极特性所做的研究工作,归纳了优化电极界面的主要措施,并提出一种有效提高IPMC材料电极界面的制备工艺设计思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王延杰
汝杰
赵东旭
王田苗
沈奇
陈花玲
朱灯林
关键词:  离子聚合物-金属复合材料  电极界面  制备工艺  化学镀  智能材料    
Abstract: As a type of emerging smart materials, ionic polymer-metal composites (IPMC) consisting of polymer matrix and metal electrodes have a good electromechanical conversion capability. It can be made into a variety of actuators and sensors easily, which show great potentials in various fields. Mechanical and electrical properties of IPMC are affected by many factors, among which the electrode interface is one of the important factors. This paper reviews domestic and foreign research works on the electrode interface characteristics of IPMC in recent years, summarizes the main methods to optimize the electrode interface and proposes an effective design ideas to improve the preparation process of electrode interface of IPMC.
Key words:  ionic polymer-metal composites    electrode interface    preparation process    chemical plating    smart material
               出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  TB381  
基金资助: *国家自然科学基金(51505369);中央高校基本科研业务费(2016B02814);常州市特种机器人及智能技术重点实验室开放基金(M20133004)
作者简介:  王延杰:男,1985年生,博士,讲师,研究方向为智能材料工艺及软机械功能设计等 E-mail:yjwang@hhu.edu.cn
引用本文:    
王延杰, 汝杰, 赵东旭, 王田苗, 沈奇, 陈花玲, 朱灯林. 离子聚合物-金属复合材料(IPMC)的电极界面研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 24-29.
WANG Yanjie, RU Jie, ZHAO Dongxu, WANG Tianmiao, SHEN Qi, CHEN Hualing, ZHU Denglin. The State of Art of Electrode Interface of Ionic Polymer-Metal Composites (IPMC). Materials Reports, 2017, 31(15): 24-29.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.004  或          http://www.mater-rep.com/CN/Y2017/V31/I15/24
1 Zhang Q M, Li H, Poh M, et al. An all-organic composite actuator material with a high dielectric constant[J]. Nature,2002,419(6904):284.
2 Stuart M A C, Huck W T S, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials[J]. Nat Mater,2010,9(2):101.
3 Shen Q, Trabia S, Stalbaum T, et al. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation[J]. Sci Rep,2016,6:24462
4 Baughman R H. Muscles made from metal[J]. Science,2003,300(5617):268.
5 Keplinger C, Sun J Y, Foo C C, et al. Stretchable, transparent, ionic conductors[J]. Science,2013,341(6149):984.
6 Ma M, Guo L, Anderson D G, et al. Bio-inspired polymer composite actuator and generator driven by water gradients[J]. Science,2013,339(6116):186.
7 Samatham R, Kim K J, Dogruer D, et al. Active polymers: An overview[M]//Electroactive Polymers for Robotic Applications. London:Springer,2007:1.
8 Bhandari B, Lee G Y, Ahn S H. A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications[J]. Int J Precis Eng Manuf, 2012,13(1):141.
9 Shen Q, Wang T, Liang J, et al. Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer-metal composite[J]. Smart Mater Struct,2013,22(7):075035.
10 Jo C, Pugal D, Oh I K, et al. Recent advances in ionic polymer-me-tal composite actuators and their modeling and applications[J]. Prog Polym Sci,2013,38(7):1037.
11 Bar-Cohen Y, Leary S P, Yavrouian A, et al. Challenges to the application of IPMC as actuators of planetary mechanisms[C]//SPIE′s 7th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics,2000:140.
12 Carpi F, De Rossi D. Electroactive polymer-based devices for e-textiles in biomedicine[J]. IEEE Trans Inform Technol Biomed,2005, 9(3):295.
13 Tiwari R, Garcia E. The state of understanding of ionic polymer metal composite architecture: A review[J]. Smart Mater Struct,2011,20(8):083001.
14 Yu M, He Q S, Ding Y, et al. Force optimization of ionic polymer metal composite actuators by an orthogonal array method[J]. Chin Sci Bull,2011,56(19):2061.
15 Shoji E, Hirayama D. Effects of humidity on the performance of io-nic polymer-metal composite actuators: Experimental study of the back-relaxation of actuators[J]. J Phys Chem B,2007,111(41):11915.
16 Palmre V, Pugal D, Kim K J, et al. Nanothorn electrodes for ionic polymer-metal composite artificial muscles[J]. Sci Rep,2014,4:6176.
17 Liu S, Montazami R, Liu Y, et al. Influence of the conductor network composites on the electromechanical performance of ionic polymer conductor network composite actuators[J]. Sens Actuators A: Phys,2010,157(2):267.
18 Nemat-Nasser S, Wu Y. Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms[J]. J Appl Phys,2003,93(9):5255.
19 Bennett M D, Leo D J. Ionic liquids as stable solvents for ionic polymer transducers[J]. Sens Actuators A: Phys,2004,115(1):79.
20 Wu G, Hu Y, Liu Y, et al. Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator[J]. Nat Commun,2015,6(3):7.
21 Kong L, Chen W. Carbon nanotube and graphene-based bioinspired electrochemical actuators[J]. Adv Mater,2014,26(7):1025.
22 Wang Y, Chen H, et al. Aided manufacturing techniques and applications in optics and manipulation for ionic polymer-metal composites as soft sensors and actuators[J]. J Polym Eng,2015,35(7):611.
23 Salehpoor K, Shahinpoor M, Razani A. Role of ion transport in actuation of ionic polymeric-platinum composite (IPMC) artificial muscles[C]//5th Annual International Symposium on Smart Structures and Materials. San Diego,1998:50.
24 Asaka K, Oguro K, Nishimura Y, et al. Bending of polyelectrolyte membrane-platinum composites by electric stimuli I. Response cha-racteristics to various waveforms[J]. Polym J,1995,27(4):436.
25 He Q, Yu M, Zhang X, et al. Electromechanical performance of an ionic polymer-metal composite actuator with hierarchical surface texture[J]. Smart Mater Struct,2013,22(5):055001.
26 Kim S J, Lee I T, Kim Y H. Performance enhancement of IPMC actuator by plasma surface treatment[J]. Smart Mater Struct,2007,16(1):N6.
27 Noh T G, Tak Y, Nam J D, et al. Electrochemical characterization of polymer actuator with large interfacial area[J]. Electrochim Acta,2002,47(13):2341.
28 Jin N, Wang B F, Bian K, et al. Effect of surface roughening on the manufacture and performance of IPMC [J]. J Funct Mater,2008,39(11):1933.
金宁, 王帮峰, 卞侃,等. 表面粗化工艺对 IPMC 的制备及性能的影响[J]. 功能材料,2008,39(11):1933.
29 Kim K J, Shahinpoor M. Ionic polymer-metal composites: Ⅱ. Ma-nufacturing techniques[J]. Smart Mater Struct,2003,12(1):65.
30 Fujiwara N, Asaka K, Nishimura Y, et al. Preparation of gold-solid polymer electrolyte composites as electric stimuli-responsive mate-rials[J]. Chem Mater, 2000,12(6):1750.
31 Chang L, Chen H, Zhu Z, et al. Manufacturing process and electrode properties of palladium-electroded ionic polymer-metal compo-site[J]. Smart Mater Struct, 2012,21(6):065018.
32 Zhou W, Li W J. Micro ICPF actuators for aqueous sensing and manipulation[J]. Sens Actuators A: Phys,2004,114(2):406.
33 Kim K J, Shahinpoor M. A novel method of manufacturing three-dimensional ionic polymer-metal composites (IPMCs) biomimetic sensors, actuators and artificial muscles[J]. Polymer,2002,43(3):797.
34 Akle B J, Bennett M D, Leo D J, et al. Direct assembly process: A novel fabrication technique for large strain ionic polymer transducers[J]. J Mater Sci,2007, 42(16):7031.
35 Kim S J, Kim S M, Kim K J, et al. An electrode model for ionic polymer-metal composites[J]. Smart Mater Struct,2007,16(6):2286.
36 Wallmersperger T, Akle B J, Leo D J, et al. Electrochemical response in ionic polymer transducers: An experimental and theoretical study[J]. Compos Sci Technol,2008,68(5):1173.
37 Porfiri M. Influence of electrode surface roughness and steric effects on the nonlinear electromechanical behavior of ionic polymer metal composites[J]. Phys Rev E,2009,79(4):041503.
38 Palmre V, Pugal D, Leang K K, et al. The effects of electrode surface morphology on the actuation performance of IPMC[J]. Proc SPIE,2013,8687(36):86870W.
39 Chang L, Asaka K, Zhu Z, et al. Effects of surface roughening on the mass transport and mechanical properties of ionic polymer-metal composite[J]. J Appl Phys,2014,115(24):244901.
40 Tiwari R, Kim K J. Effect of metal diffusion on mechanoelectric property of ionic polymer-metal composite[J]. Appl Phys Lett,2010,97(24):244104.
[1] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[2] 王坤宇, 冯运莉, 柳昆. 纳米复相永磁材料的研究进展[J]. 材料导报, 2019, 33(z1): 116-121.
[3] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[4] 左迎峰, 李萍, 屠茹茹, 赵星, 袁光明, 吴义强. 基于响应曲面法优化酸解氧化制备高醛基含量的双醛淀粉的工艺条件[J]. 材料导报, 2019, 33(2): 335-341.
[5] 成小乐, 尹君, 屈银虎, 符寒光, 赵冰. 连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术[J]. 《材料导报》期刊社, 2018, 32(5): 796-807.
[6] 杨芳, 张龙, 余堃, 齐天骄, 官德斌. 石墨烯湿敏性能研究进展[J]. 材料导报, 2018, 32(17): 2940-2948.
[7] 崔田路, 顾雪, 贾中秋, 尹晓桐, 曹中秋, 张轲. 不同工艺制备的纳米晶Ag-25Ni合金在NaCl溶液中的腐蚀性能[J]. 材料导报, 2018, 32(16): 2798-2802.
[8] 周娩红,陈石林,杨建校,郭建光. 镀铜CF/ABS树脂复合材料的导电性能[J]. 《材料导报》期刊社, 2018, 32(10): 1592-1596.
[9] 孙东健,杨建校,马国芝,周娩红,刘洪波. 中间相沥青基石墨纤维表面化学镀铜及性能表征[J]. 《材料导报》期刊社, 2017, 31(24): 129-132.
[10] 王鹏,高增,程东锋,牛济泰,. 高体积比SiCp/A356复合材料真空扩散钎焊接头组织与性能研究*[J]. 材料导报编辑部, 2017, 31(22): 75-78.
[11] 袁飞洋, 万强, 张灿阳, 李旭. 磁流变弹性体力磁耦合本构关系的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 1-12.
[12] 李庆达, 郭建永, 胡军, 王宏立, 连法增, 陆曹卫. 通过改进的制备工艺提高FINEMET纳米晶磁粉芯的磁性能及其机理*[J]. 《材料导报》期刊社, 2017, 31(16): 26-30.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed