Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 21090269-18    https://doi.org/10.11896/cldb.21090269
  无机非金属及其复合材料 |
工业固体废弃物材料制作冷粘结人造轻骨料的研究进展
刘军1,2, 李振林1,2, 张伟卓1,2, 靳贺松1,2,*, 邢锋1,2
1 深圳大学土木与交通工程学院,广东 深圳 518060
2 广东省滨海土木工程耐久性重点实验室,广东 深圳 518060
Research Advances in Cold-bonded Artificial Lightweight Aggregates Made from Industrial Solid Waste Materials
LIU Jun1,2, LI Zhenlin1,2, ZHANG Weizhuo1,2, JIN Hesong1,2,*, XING Feng1,2
1 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
2 Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen 518060, Guangdong, China
下载:  全 文 ( PDF ) ( 11285KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用固体废弃物制作的冷粘结轻质骨料作为新型环保材料,满足资源再利用和节约能源、减少环境污染以及可持续发展战略的要求,是设计环保型混凝土的主要研究方向和推广方向。目前,提高绿色人造轻质骨料混凝土性能的重要手段之一就是克服人造轻骨料的缺陷,如吸水率大、坚固性差、孔洞多、干裂等。现有利用固废制备的人造轻骨料性能提升方式主要从造粒工艺、养护制度着手,如CO2养护、烧结养护、挤压造粒等。同时通过调整固体废弃物材料种类、掺量也可以有效提升人造轻质骨料的性能。此外,借助不同的微观分析手段(如扫描电镜、水化热分析、热重分析、X射线分析等),并通过分析骨料力学性能、物理性能的影响因素,如化学组成、造粒设备参数等,也可以优化出有效提升人造骨料性能的方法,如纤维增强、碱性处理等。本文主要总结了工业固体废物的种类及造粒性能,综述了人造轻骨料的造粒方式、养护工艺、力学强度、物理性能和微观性能等研究进展,并指出了未来人造轻骨料的研究任务和完善方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘军
李振林
张伟卓
靳贺松
邢锋
关键词:  人造轻骨料  制备工艺  力学性能  物理性能  微观性能  环境影响    
Abstract: Cold-bonded lightweight aggregates (CBLAs) made from solid waste are used as a new type of eco-friendly material to meet the requirements of resource reuse, energy savings, environmental pollution reduction and sustainable development strategies. It is the main research and promotion direction for designing eco-efficiency concrete. Recently, one of the important means to enhance the performance of green concrete with CBLAs has been to improve the defects of CBLAs, such as high-water absorption, poor firmness, numerous holes, and dry cracks. The existing methods for improving the properties of CBLAs prepared from solid waste mainly start from the granulation process and curing system, such as CO2 curing, sintering curing, and extrusion granulation. Furthermore, the performance of CBLAs can also be effectively improved by adjusting the type and dosage of solid waste materials. In addition, with the help of different microscopic analysis methods (scanning electron microscopy, thermal analysis of hydration, thermogravimetric analysis, X-ray analysis), and by analyzing the factors affecting the mechanical properties and physical properties of CBLAs, such as chemical composition, granulation equipment parameters, and using methods such as fiber reinforcement and alkaline treatment, the performance of CBLAs can also be optimized. The types and applications of industrial solid wastes, granulation methods, curing processes, mechanical strength, physical properties and microscopic properties of CBLAs are mainly reviewed, and future research tasks and improvement directions of CBLAs are also proposed in this paper.
Key words:  artificial lightweight aggregates    preparation process    mechanical properties    physical properties    micro properties    environmental impact
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TU528  
基金资助: 深圳市可持续发展专项(KCXFZ20201221173202008);国家自然科学基金(52178234);深圳市国际科技合作研究项目(GJHZ20180928155602083)
通讯作者:  *靳贺松,深圳大学土木与交通工程学院助理研究员。2019年在西南交通大学获得建筑与土木工程硕士学位,目前主要从事纤维水泥基复合材料、可持续性绿色混凝土、固废利用、低碳建筑材料和混凝土结构耐久性等方面的研究工作。近五年参加并完成了4项国家自然科学基金和省部级的科研项目课题; 在Journal of Cleaner Production、Construction and Building Materials、Journal of Building Engineering、Structural Concrete和《材料导报》等期刊发表了10余篇论文。jhs199315@my.swjtu.edu.cn   
作者简介:  刘军,深圳大学土木与交通工程学院副教授。2013年在中南大学土木工程专业博士毕业。2017—2018年瑞典查尔姆斯理工大学访问学者。目前主要从事固废利用、低碳建筑材料和混凝土结构耐久性等方面的研究工作。发表论文60余篇,包括Journal of Hazardous Materials、Cement and Concrete Research、Journal of Cleaner Production、Construction and Building Materials和《建筑材料学报》等。
引用本文:    
刘军, 李振林, 张伟卓, 靳贺松, 邢锋. 工业固体废弃物材料制作冷粘结人造轻骨料的研究进展[J]. 材料导报, 2023, 37(18): 21090269-18.
LIU Jun, LI Zhenlin, ZHANG Weizhuo, JIN Hesong, XING Feng. Research Advances in Cold-bonded Artificial Lightweight Aggregates Made from Industrial Solid Waste Materials. Materials Reports, 2023, 37(18): 21090269-18.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090269  或          http://www.mater-rep.com/CN/Y2023/V37/I18/21090269
1 Steady progress towards high-quality development driven by innovation—2019 China Concrete and Cement Products Industry Operation Report. Economic Operation Department of China Concrete and Cement Products Association, 2020 (in Chinese).
创新驱动向高质量发展稳步前行—2019年中国混凝土与水泥制品行业运行报告. 中国混凝土与水泥制品协会经济运行部, 2020.
2 Mefteh H, Kebaieli O, Oucief H, et al. Journal of Cleaner Production,2013, 54, 282.
3 Ready Mixed Concrete Branch of China Concrete and Cement Products Association. 2020 Annual Ready Mixed Concrete Industry Development Report. Beijing, 2021 (in Chinese).
2020年度预拌混凝土行业发展报告. 中国混凝土与水泥制品协会预拌混凝土分会. 北京, 2021.
4 Sharma R, Khan R A. Journal of Cleaner Production, 2017, 151, 179.
5 Xuan D, Zhan B, Poon C S, et al. Journal of Hazardous Materials, 2016, 312, 65.
6 Xuan D, Zhan B, Poon C S. Cement & Concrete Composites, 2016, 65, 67.
7 Zhang L. Construction & Building Materials, 2013, 47, 643.
8 Kayali O. Construction & Building Materials, 2008, 22 (12), 2393.
9 Ferraro A, Colangelo F, Farina I, et al. Critical Reviews in Environmental Science and Technology, 2020 (12), 1.
10 Nor A M, Yahya Z, Abdullah M, et al. Matec Web of Conferences, 2016, 78, 01067.
11 Priyadharshini P, Mohan G, Santhi A S. International Journal of Earth Sciences and Engineering, 2012.
12 Li J P, Li C Z, Wang T Y, et al. Chemical Machinery, 2001, 28 (5), 5 (in Chinese).
李建平, 李承政, 王天勇, 等.化工机械, 2001, 28 (5), 5.
13 Nesbitt R U. Drug Development and Industrial Pharmacy,1994, 20 (20), 3207.
14 Xi T P, Liu C Y. Fertilizer Industry, 1998, 25 (2), 6 (in Chinese).
奚天鹏, 刘传义.化肥工业, 1998, 25 (2), 6.
15 Wei Y F, Tian B. Electromechanical Information, 2013(8), 13 (in Chinese).
魏羽锋, 田冰.机电信息, 2013 (8), 13.
16 Iveson S M. Powder Technology, 2002, 124 (3), 219.
17 Bijen J. International Journal of Cement Composites & Lightweight Concrete, 1986, 8 (3), 191.
18 Arslan H, Baykal G. Environmental Geology, 2006, 50 (5), 761.
19 Tajra F, Abd Elrahman M, Stephan D. Construction and Building Mate-rials, 2019, 225, 29.
20 Kaige T, Yanshuai W, Shuxian H, et al. Construction and Building Materials, 2021, 281,122552.
21 Shi M, Ling T C, Gan B, et al. Construction and Building Materials, 2019, 199, 178.
22 Ipek S, Ayodele OA, Mermerdas, K. Construction and Building Mate-rials, 2020, 238,117756.
23 Jiang Y, Ling T C, Shi M. S. Journal of Cleaner Production, 2020, 257, 120515.
24 Tang P, Florea M, Brouwers H. Journal of Cleaner Production, 2017, 165,1371.
25 Tang P, Brouwers H J H. Construction and Building Materials, 2018, 167, 271.
26 Narattha C, Chaipanich A. Journal of Cleaner Production, 2018,171,1094.
27 Vali K S, Murugan S B. Advances in Concrete Construction, 2020, 9 (2), 183.
28 Reddy M, Nataraja M C, Sindhu K, et al. International Journal of Engineering Research and Technology, 2016, 9(2), 95.
29 Vali K S, Murugan S B. Revista Romana De Materiale-Romanian Journal of Materials, 2020, 50(1), 40.
30 Colangelo F, Messina F, Palma L D, et al. Composites Part B Enginee-ring, 2017, 116, 46.
31 Tajra F, Abd Elrahman M, Lehmann C, et al. Construction and Building Materials, 2019, 205, 39.
32 Shi M J, Lin Z C. Concrete, 2019 (9), 6 (in Chinese).
施敏蛟, 林忠财.混凝土, 2019 (9), 6.
33 Wu Z, Wang N, Wu J N, et al. Powder Metallurgy Technology, 2021, 39(3), 5 (in Chinese).
武洲, 王娜, 吴吉娜, 等.粉末冶金技术, 2021, 39 (3), 5.
34 Fan J Z. Fly Ash, 2007, 19 (6), 41 (in Chinese).
范锦忠.粉煤灰, 2007, 19 (6), 41.
35 李国安. 中国发明专利, CN202010503250.2, 2020.
36 Styron R W. U.S. patent, US06/669284, 1986.
37 Show K Y, Lee D J, Tay J H, et al. Journal of Environmental Enginee-ring, 2005, 131 (7), 1106.
38 Cheeseman C R, Sollars C J, Mcentee S. Resources Conservation & Recycling, 2004, 40 (1), 13.
39 Thomas J, Harilal B. Cement and Concrete Composites, 2015, 62, 67.
40 Geetha S, Ramamurthy K. Journal of Cleaner Production, 2010, 18 (15), 1563.
41 Manikandan R, Ramamurthy K. Cement & Concrete Composites, 2008, 30 (9), 848.
42 Tang P, Xuan D, Cheng H W, et al. Journal of Hazardous Materials, 2020, 381, 120951.
43 Fang Y F, Wang D, Wang Q, et al. Material Reports, 2020, 34 (3), 7 (in Chinese).
房延凤, 王丹, 王晴, 等.材料导报,2020, 34 (3), 7.
44 Pan X, Shi C, Hu X, et al. Construction and Building Materials, 2017, 154, 1087.
45 Ahmaruzzaman M. Progress in Energy & Combustion Science, 2010, 36 (3), 327.
46 Rivera F, Martínez P, Castro J, et al. Cement & Concrete Composites, 2015, 104.
47 Wang F H, Zhang F, Chen Y J, et al. Journal of Hazardous Materials, 2015, 300, 451.
48 Tang P, Florea M V A, Brouwers H J H,et al. 4th International Confe-rence on Sustainable Solid Waste Management, 2016, 23, 23.
49 Liu W, Yang J, Xiao B. Journal of Hazardous Materials, 2009, 161 (1), 474.
50 Xiao J, Ma Z, Sui T, et al. Journal of Cleaner Production, 2018, 188, 720.
51 Hwang C L, Tran V A. Construction & Building Materials, 2015, 87, 78.
52 Le A, Hwang C L, Chen C T, et al. Construction & Building Materials, 2012, 35, 1056.
53 Ferone C, Claudio F, Messina F, et al. Materials, 2013, 6 (11), 5000.
54 Harilal B, Thomas J. American Journal of Engineering Research, 2013, 1, 20.
55 Gesoğlu M, Güneyisi E, Öz HÖ. Materials & Structures, 2012, 45, 1535.
56 Chiou I J, Wang K S, Chen C H, et al. Waste Management, 2006,26 (12), 1453.
57 Terzi A, Pezo L, Miti V, et al. Ceramics International,2015, 41 (2), 2714.
58 Geetha S, Ramamurthy K. Cement & Concrete Composites, 2013, 43, 20.
59 Colangelo F, Cioffi R. Materials, 2013, 6(8), 3139.
60 Gomathi P, Sivakumar A. ARPN Journal of Engineering and Applied Sciences, 2012, 7(11), 1523.
61 Tang P, Brouwers H. Waste Management, 2017, 62, 125.
62 Vasugi V, Ramamurthy K. Materials and Design, 2014, 54, 264.
63 Colangelo. F, Messina. F, Raffaele Cioffi. Journal of Hazardous Mate-rials, 2015, 299, 181.
64 Bui L A T, Hwang C L, Chen C T, et al. Applied Mechanics & Materials, 2012, 174, 978.
65 Cioffi R, Colangelo F, Montagnaro F, et al. Waste Management, 2011, 31 (2), 281.
66 Priyadharshini P, Ganesh M, Santhi A S. International Journal for Computational Civil and Structural Engineering, 2011, 2 (2), 507.
67 Yildirim H, Özturan T. In:2nd International Balkans Conference on Challenges of Civil Engineering, BCCCE, Epoka University, Tirana, Albania., 2013.
68 Tajra F, Abd Elrahman M, Chung S Y, et al. Construction and Building Materials, 2018, 179, 220.
69 Gesoɡˇlu M, Özturan T, Güneyisi E. Construction & Building Materials, 2007, 21 (9), 1869.
70 Videla C, Martinez P M. In: Sustainable Concrete Construction. Proceedings of the International Conference Held at the University of Dundee. Scotland, UK, 2002, pp. 363.
71 Joseph G, Ramamurthy K. Construction & Building Materials, 2009, 23 (5), 1862.
72 Vijay P. International Journal of Recent Development in Engineering and Technology, 2015, 4(7), 37.
21090269-1773 Kockal N U, Ozturan T. Cement & Concrete Composites, 2011, 33 (1), 61.
74 Gomathi P, Sivakumar A. Construction & Building Materials, 2015, 77, 276.
75 Luca D P, Franco M, Giorgio V. Chemical Engineering Transactions, 2015, 43,1723.
76 Gueneyisi E, Gesoglu M, Altan I, et al. Construction and Building Materials, 2015, 74, 9.
77 Kumar V, Anandh K S, Kumar M V, et al. International Journal of Innovative Research in Technology, 2014, 6 (5), 120.
78 Baykal G, Döven A G. Resources, Conservation and Recycling, 2000, 30 (1), 59.
79 Manikandan R, Ramamurthy K. Journal of Materials in Civil Enginee-ring, 2009, 21 (10), 578.
80 Gesoglu M, Özturan T, Güneyisi E. Cement and Concrete Research, 2004, 34 (7), 1121.
81 Gueneyisi E, Gesoglu M, Ipek S. Construction & Building Materials, 2013, 47, 358.
82 Kockal N U, Ozturan T. Construction & Building Materials, 2011,25(3), 1430.
83 Chi J M, Huang R, Yang C C, et al. Cement & Concrete Composites, 2003, 25 (2), 197.
84 Gesoglu M, Gueneyisi E, Oezturan T, et al. Composites Part B Enginee-ring, 2014, 60, 757.
85 Frankovi A, Bosiljkov V B, Ducman V. Materiali in Tehnologije, 2018, 51 (2),267.
86 Gomathi P, Sivakumar A. Journal of Engineering & Applied Sciences, 2013,4(8),246.
87 Gesoglu M, Gueneyisi E, Mahmood S F, et al. Journal of Hazardous Materials, 2012, 235-236, 352.
88 Tangtermsirikula S, Wijeyewickremab A C. Science Asia, 2000, 26, 237.
89 Geetha S, Ramamurthy K. Waste Management, 2010, 30 (8), 1528.
90 GB/T 17431.2-2010, Lightweight aggregates and its test methods-Part 2: Test methods for lightweight aggregates, National Standardization Administration of the People's Republic of China, 2010 (in Chinese).
GB/T 17431.2-2010, 轻集料及其试验方法第2部分:轻集料试验方法, 中华人民共和国国家标准化管理委员会, 2010.
91 Liu J, Li Z, Zhang W, et al. Journal of Cleaner Production, 2022, 337, 130479.
92 GB/T 17431.1-2010. Lightweight aggregates and its test methods Part 1: Lightweight aggregates, National Standardization Administration of the People's Republic of China, 2010 (in Chinese).
GB/T 17431.1-2010. 轻集料及其试验方法第1部分:轻集料, 中华人民共和国国家标准化管理委员会, 2010.
93 DIN EN13055:2015, Lightweight aggregates 13055:2015 - annex C: determination of grain strength, European Committee Standardization, 2015.
94 JTG E42—2005, Test methods of aggregate for highway engineering, Highway Science Research Institute, Ministry of Communications. Highway Engineering Aggregate Test Regulations, 1994 (in Chinese).
JTG E42—2005, 公路工程集料试验规程, 交通部公路科学研究所. 公路工程集料试验规程,1994.
95 BS 812-111 B. Testing aggregates. part 111: methods for determination of ten per cent fines value (Tfv), British Standards Institution, UK, 1990.
96 Harikrishnan K I, Ramamurthy K. Waste Management, 2006, 26 (8), 846.
97 Tang P, Xuan D, Poon C S, et al. Journal of Hazardous Materials, 2019, 368, 689.
98 DIN EN 1097-6:2013-09. Test methods for mechanical and physical pro-perties of aggregates - Part 6: Determination of bulk density and water absorption , Technical Committee CEN/TC 154 “Aggregates”, European Committee Standardization, 2013.
99 ASTM C127, Standard test method for density, relative density (specific gravity), and absorption, PA: ASTM International, United States, 2014.
100 DIN EN 1097-3:1998-06, Test methods for mechanical and physical properties of aggregates - Part 3: Determination of bulk density and void content, Technical Committee CEN/TC 154 “Aggregates”, European Committee Standardization, 1998.
101 ASTM.C29/C29M-09, Standard test method for bulk density (“unit weight”) and voids in aggregate, PA: ASTM International, United States, 2010.
102 Guo Y S, Ding J T, Kimura K, et al. In: The 6th National Symposium on Lightweight Aggregate and Lightweight Aggregate Concrete, Tianjin, 2000 (in Chinese).
郭玉顺, 丁建彤, 木村熏, 等.第六届全国轻骨料及轻骨料混凝土学术讨论会, 天津,2000.
103 Hu S G, Wang F Z, Ding Q J, et al. Journal of Huazhong University of Science and Technology: Urban Science Edition, 2002, 19(2), 4 (in Chinese).
胡曙光, 王发洲, 丁庆军, 等.华中科技大学学报:城市科学版, 2002, 19(2), 4.
104 Wasserman R, Bentur A. Cement and Concrete Composites, 1996, 18 (1), 67.
105 Li D, Xu Z, Luo Z, et al. Cement & Concrete Research, 2002, 32 (7), 1145.
106 Han P, Wang J H, Lu A X, et al. Spectroscopy and Spectral Analysis, 2012, 32 (3), 4 (in Chinese).
韩平, 王纪华, 陆安祥, 等. 光谱学与光谱分析, 2012, 32 (3), 4.
107 Hu L Y, Zhang Q J, Shen Y. Journal of Hebei Union University (Natural Science Edition), 2004, 26 (3), 83 (in Chinese).
胡林彦, 张庆军, 沈毅.河北联合大学学报(自然科学版), 2004, 26 (3), 83.
108 Tang P, Chen W, Xuan D X, et al. Journal of Hazardous Materials, 2020, 393, 122386.
109 Chen Y, Li D X. Silicate Bulletin, 2006, 25 (4), 5 (in Chinese).
陈悦, 李东旭.硅酸盐通报,2006, 25 (4), 5.
110 Otsu N. IEEE Transactions on Systems Man & Cybernetics, 2007, 9 (1), 62.
111 Abràmoff M D, Magalhes P J, Ram S J. Biophotonics International, 2004, 11 (7), 36.
112 İpek S, Ayodele O A, Mermerdaş K. Construction and Building Mate-rials, 2020, 238, 117756.
113 Kim H K, Jeon J H, Lee H K. Construction & Building Materials, 2012, 29, 193.
114 Lo T Y, Cui H Z, Li Z G. Waste Management, 2004, 24 (4), 333.
115 Gesolu M, Güneyisi E, Zturan T, et al. Construction and Building Materials, 2014, 59 (3), 1.
116 Ke Y, Beaucour A L, Ortola S, et al. Construction & Building Materials, 2009, 23 (8), 2821.
117 Yoon J K, Jin Y, Kim J H, et al. Materials (Basel), 2015, 8(4), 1384.
118 Guneyisi E, Gesoglu M, Pursunlu O, et al. Composites Part B: Engineering, 2011, 53, 258.
119 Liu X, Chia K S, Zhang M H. Construction & Building Materials, 2011, 25 (1), 335.
120 Kockal N U, Ozturan T. Journal of Hazardous Materials, 2010, 179 (1-3), 954.
121 Zhutovsky S, Kovler K,Materials and Structures, 2002, 35 (246), 97.
122 Senneca O, Cortese L, Martino R D, et al. Journal of Cleaner Production, 2020, 261, 121230.
123 Yang Z, Ji R, Liu L, et al. Construction & Building Materials, 2018, 162, 794.
124 HJ 557-2009, Solid waste-extraction procedure for leaching toxicity-horizontal vibration method,Ministry of Environmental Protection of the People's Republic of China, 2010 (in Chinese).
HJ 557-2009, 固体废物浸出毒性浸出方法水平振荡法, 中华人民共和国国家环境保护部, 2010.
125 GB 5085.3-2007, Identification standards for hazardous wastes identification for extraction toxicity, State Environmental Protection Administration of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine, 2007 (in Chinese).
GB 5085.3-2007,危险废物鉴别标准浸出毒性鉴别, 中华人民共和国国家环境保护总局, 国家质量监督检验检疫总局, 2007.
126 EPA Method 1311, Test Method 1311-Toxicity characteristic leaching procedure, EPA-SW-846 Online, United States Environmental Protection Agency, U.S.1992.
127 Gong B, Deng Y, Yang Y, et al. Energy & Fuels, 2017, 31 (11), 12446.
[1] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[2] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[3] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[4] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[5] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[6] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[7] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[8] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[9] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[10] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[11] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[12] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[13] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[14] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[15] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed