Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 23010108-12    https://doi.org/10.11896/cldb.23010108
  高分子与聚合物基复合材料 |
冻融环境下FRCC孔隙结构与力学性能研究综述
吴伟喆1, 刘阳1,2, 张艺欣1,2,*, 黄建山3, 闫国威1
1 华侨大学土木工程学院,福建 厦门 361021
2 福建省结构工程与防灾重点实验室,福建 厦门 361021
3 厦门捷航工程检测技术有限公司,中交第三航务工程局有限公司厦门分公司,福建 厦门 361006
Pore Structure and Mechanical Properties of FRCC in the Freeze-thaw Environment: a Review
WU Weizhe1, LIU Yang1,2, ZHANG Yixin1,2,*, HUANG Jianshan3, YAN Guowei1
1 College of Civil Engineering, Huaqiao University, Xiamen 361021, Fujian, China
2 Key Laboratory for Structural Engineering and Disaster Prevention of Fujian Province, Xiamen 361021, Fujian, China
3 Xiamen Branch of CCCC Third Harbor Engineering Co., Ltd., Xiamen Jiehang Engineering Testing Technology Co., Ltd., Xiamen 361006, Fujian, China
下载:  全 文 ( PDF ) ( 8168KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维增强水泥基复合材料(Fiber reinforced cement composites,FRCC)是由纤维、基体、纤维-基体界面过渡区组成的多相复合材料,其耐久性能由微观孔隙结构及细观纤维-基体相互作用共同决定。寒冷地区环境温度周期性地升高和降低导致水泥基材料不断经历冻融循环作用,使其耐久性迅速降低。因此,本文从FRCC冻融损伤机理出发,综述了冻融循环对FRCC孔隙结构和力学性能的影响,剖析了其中的关联关系。本文首先总结了不同冻融循环次数下纤维类型、掺量、长径比等因素对FRCC孔隙特征参数的影响,进而分析孔隙结构、纤维固有性质及纤维-基体界面性能与冻融FRCC宏观力学性能的关联关系,最后对基于孔隙结构的既有FRCC冻融损伤模型进行了总结,并对建立多尺度冻融损伤模型进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴伟喆
刘阳
张艺欣
黄建山
闫国威
关键词:  冻融循环作用  纤维增强水泥基复合材料  孔隙结构特征  力学性能  冻融损伤模型    
Abstract: Fiber reinforced cement composites (FRCC) is a multiphase composite composed of fiber, matrix and fiber-matrix interfacial transition zone. The microscopic pore structure and meso fiber-matrix interaction determine its durability. The periodic increase and decrease of environmental temperature in cold regions cause cementitious materials to undergo freeze-thaw cycles, rapidly decreasing durability. Therefore, based on the mechanism of FRCC freeze-thaw damage, this paper summarizes the influence of freeze-thaw cycles on the pore structure and mechanical pro-perties of FRCC and analyzes the relationship among them. The effects of the different freeze-thaw cycles on the FRCC's fiber type, content, aspect ratio, and pore characteristic parameters are first investigated in this paper. After that, the relationship between the mechanical properties of FRCC in the freeze-thaw environment and the fiber's inherent properties, fiber-matrix interface bonding property, and relationship between them is examined. Ultimately, the existing freeze-thaw damage models of FRCC based on pore structure are summarized, and the prospect of establishing multi-scale freeze-thaw damage models is proposed.
Key words:  freeze-thaw action    fiber reinforced cement composite    pore structure characteristic    mechanical property    freeze-thaw damage model
发布日期:  2023-09-06
ZTFLH:  TB332  
基金资助: 国家自然科学基金 (52208313;51878304);福建省自然科学基金杰出青年基金 (2020J06020)
通讯作者:  *张艺欣,博士,华侨大学土木工程学院讲师、硕士研究生导师。目前主要从事混凝土结构耐久性、高性能水泥基复合材料、抗震性能评价等方向的研究,主持国家自然科学基金青年项目、福建省自然科学基金青创项目等多项课题。zhangyixin@hqu.edu.cn   
作者简介:  吴伟喆,2020年6月于西南交通大学获得工学学士学位。现为华侨大学土木工程学院硕士研究生,研究领域为纤维增强水泥基复合材料耐久性。
引用本文:    
吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
WU Weizhe, LIU Yang, ZHANG Yixin, HUANG Jianshan, YAN Guowei. Pore Structure and Mechanical Properties of FRCC in the Freeze-thaw Environment: a Review. Materials Reports, 2023, 37(S1): 23010108-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010108  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/23010108
1 Arnon B, Sidney M. Fibre Reinforced Cementitious Composites, Taylor & Francis Press, USA and Canada, 2007.
2 Zollo R F. Cement and Concrete Composites, 1997, 19(2), 107.
3 ACI Committee 544. Report on Fiber Reinforced Concrete (ACI PRC-544. 1R-96), 1996.
4 Swamy R N. In: Materials Research Society General Meeting. Boston, 1980, pp.159.
5 Bajaber M A, Hakeem I Y. Journal of Materials Research and Technology, 2021, 10, 1058.
6 Li V C. JSCE Journal of Structural Engineering Mechanics and Earthquake Engineering, 1993, 10(2), 37.
7 Lin Z, Li V C. Journal of the Mechanics and Physics of Solids, 1997, 45(5), 763.
8 Sakulich A R, Li V C. In: 33rd Int'1 Conf on Cement Microscopy. San Francisco, CA, USA, 2011, pp.1.
9 Wang R, Hu Z, Li Y, et al. Construction and Building Materials, 2022, 321, 126371.
10 Wang R, Zhang Q, Li Y. Construction and Building Materials, 2022, 319, 126045.
11 Li Y, Zhang J, He Y, et al. Composites Science and Technology, 2022, 225, 109519.
12 Zheng Y X, Zhuo J B, Zhang P. Construction and Building Materials, 2021, 304, 124659.
13 Jin H S, Li F H, He X Y F, et al. Materials Reports, 2020, 34(8), 8071(in Chinese).
靳贺松, 李福海, 何肖云峰, 等. 材料导报, 2020, 34(8), 8071.
14 Jang S J, Rokugo K, Park W S, et al. Materials, 2014, 7(2), 1422.
15 Yun H D. Composites Part B, 2013, 52, 11.
16 Pigeon M, Pleau R. Durability of concrete in cold climates (1995), CRC Press, London, 1995, pp.212.
17 Zheng X, Wang Y, Zhang S, et al. Construction and Building Materials, 2022, 330, 127254.
18 Nam J, Kim G, Lee B, et al. Composites Part B, DOI: 10. 1016/j. compositesb. 2015. 12. 009.
19 Mustafa S, Erdogan O. Cement & Concrete Composites, 2012, 34, 156.
20 Dong F, Wang H, Yu J, et al. Construction and Building Materials, 2021, 295, 123427.
21 Wang Y, Zhang S, Niu D, et al. Cement and Concrete Composites, 2022, 125, 104292.
22 Ma H Q, Yi C, Wu C. Construction and Building Materials, 2021, 287, 122719.
23 Li L J, Liu Q F, Tang L P, et al. Construction and Building Materials, 2021, 302, 124291.
24 Jiang W Q, Liu Q F, Shen X H, et al. Ocean Engineering, 2019, 186, 106093.
25 Jiang W, Liu Q. Journal of the Chinese Ceramic Society, 2020, 48(2), 258 (in Chinese)
姜文镪, 刘清风. 硅酸盐学报, 2020, 48(2), 258.
26 Powers T C, Willis T F. Highway Research Board Proceedings, 1949, 29, 183.
27 Powers T C, Helmuth R A. Highway Research Board Proceedings, 1953, 32, 285.
28 Qiu W L, Teng F, Pan S S. Construction and Building Materials, 2020, 236, 117560.
29 Zeng Q. Study on pore mechanics of cement-based materials during low temperature crystallization. Ph. D. Thesis, Tsinghua University, China, 2012 (in Chinese).
曾强. 水泥基材料低温结晶过程孔隙力学研究. 博士学位论文, 清华大学, 2012.
30 Çopurolu O, Schlangen E. Cement and Concrete research, 2008, 38(1), 27.
31 Birnin-Yauri U A, Glasser F P. Cement and Concrete Research, 1998, 28(12), 1713.
32 Wang Y, Li J, Ueda T, et al. Cement and Concrete Composites, 2021, 117, 103906.
33 Jin S, Zhang J, Han S. Construction and Building Materials, 2017, 135, 1.
34 Schober G. In: 5th International Conference on Autoclaved Aerated Concrete. Bydgoscsz Poland, 2011, pp.351.
35 Diamond S. In: Proceedings of Conference on Hydraulic Cement Pastes: Their Structure and Properties. Sheffield, 1976, pp.2.
36 Jennings H M, Dalgleish B J, Pratt P L. Journal of the American Ceramic Society, 1981, 64(10), 567.
37 Powers T C. Portland Cement Association R & D Bulletin, 1958, 90, 1.
38 Winslow D N, Diamond S. Journal of Materials, 1970, 5(3), 564.
39 ASTM, Standard ASTM C125-19, Standard Terminology Relating to Concrete and Concrete Aggregates, American Society for Testing and Materials, 2019.
40 Sharma M, Bishnoi S. Recent Advances in Structural Engineering, 2019, 2, 745.
41 Li D, Niu D, Fu Q, et al. Cement and Concrete Composites, 2020, 109, 103555.
42 Mehta P K, Monteiro P J M. Concrete: Microstructure, Properties, and Materials, McGraw-Hill, USA, 2006, pp.30.
43 Liu L, Wang X, Zhou J, et al. Cement and Concrete Research, 2018, 109, 133.
44 Igarashi S, Bentur A, Mindess S. Cement and Concrete Compososites, 1996, 18(5), 313.
45 Sun W, Mandel J A, Said A S. Journal of the American Concrete Institute, 1986, 83(4), 597.
46 Sun W, Gao J M, Qin H G. Journal of the Chinese Ceramic Society, 1985, 13(3), 292 (in Chinese)
孙伟, 高建明, 秦鸿根. 硅酸盐学报, 1985, 13(3), 292.
47 Wang J B, Niu D T. Materials Reports, 2019(8), 1340(in Chinese).
王家滨, 牛荻涛. 材料导报, 2019(8), 1340.
48 Guo L P, Zhang W X, Sun W, et al. Journal of Southeast University (Natural Science Edition), 2016(3), 612(in Chinese).
郭丽萍, 张文潇, 孙伟, 等. 东南大学学报(自然科学版), 2016(3), 612.
49 Cui S A, Fu F, Zeng G, et al. Journal of Southeast University (Natural Science Edition), 2022(1), 43(in Chinese).
崔圣爱, 符飞, 曾光, 等. 东南大学学报(自然科学版), 2022(1), 43.
50 Ahamad M S S, Maizul E N M. Civil and Environmental Engineering Reports, 2020, 30(2), 65.
51 Diamond S. Cement and Concrete Composites, 2004, 26(8), 919.
52 Zhang M Z, Andrey P J. Composites Part B: Engineering, 2016, 88, 64.
53 Moreno-Atanasio R, Williams R, Jia X D. Particuology, 2010, 8(2), 81.
54 Dong W, Fu Q W, Shen X D, et al. Materials Reports, 2023, 37(2), 69(in Chinese).
董伟, 付前旺, 申向东, 等. 材料导报, 2023, 37(2), 69.
55 Yuan C F, Gao D Y. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014(4), 122(in Chinese).
元成方, 高丹盈. 华中科技大学学报(自然科学版), 2014(4), 122.
56 Diamond S. Cement and Concrete Research, 2000, 30(10), 1517.
57 Kenneth S. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 3-9, 187.
58 Zeng Q, Li K, Fen-Chong T, et al. Cement and Concrete Research, 2012, 42(1), 194.
59 Zeng Q, Li K, Fen-Chong T, et al. Cement and Concrete Composites, 2012, 34(9), 1053.
60 Liu L, Wang X C, Zhou J. Cement and Concrete Research, 2018, 109, 133.
61 Fu Q, Xu W, Li D, et al. Cement and Concrete Composites, 2021, 118, 103954.
62 Zhou X Y, Yang D Y, Zhu C X, et al. Journal of Materials Science and Engineering, 2022(1), 110(in Chinese).
周兴宇, 杨鼎宜, 朱从香, 等. 材料科学与工程学报, 2022(1), 110.
63 Liang N H, Hu Y, Zhong Y, et al. Journal of Chongqing University. 2019(11), 38(in Chinese).
梁宁慧, 胡杨, 钟杨, 等. 重庆大学学报, 2019(11), 38.
64 Wang L, He T, Zhou Y, et al. Construction and Building Materials, 2021, 282, 122706.
65 Li Y, Shen A, Wu H. Materials, 2020, 13(14), 3238.
66 Sun M, Zou C, Xin D. Cement and Concrete Composites, 2020, 114, 103731.
67 JinS S, Zheng G P, Yu J. Construction and Building Materials, 2020, 257, 119434.
68 Halamickova P, Detwiler R J, Bentz D P, et al. Cement and Concrete Research, 1995, 25(4), 790.
69 Koh Y, Kamada E. In: Proceedings RILEM/IUPAC International Symposium on Pore Structure and Properties of Materials. Prague, 1973, pp.F45.
70 Lange H, Modry S. In: Proceedings, Rilem Symposium on Durability of Concrete. Prague, 1969, pp.B129.
71 Litvan G G, Sereda P J. Cement and Concrete Research, 1977, 8(1), 53.
72 Neville A M. Properties of concrete (4th Edition), Longman Scientific & Technical Ltd., UK, 1995.
73 Shon C S, Abdigaliyev A, Bagitova S, et al. Cold Regions Science and Technology, 2018, 155, 127.
74 Gu C, Sun W, Guo L, et al. Advances in Materials Science and Enginee-ring, 2018, 9, 1.
75 Li B, Lan J, Si G, et al. International Journal of Mining Science and Technology, 2020, 30(3), 329.
76 Powers T C. Special Publication, 1975, 47, 1.
77 Schock J, Liebl S, Achterhold K, et al. Cement and Concrete Research, 2016, 89, 200.
78 Powers T C. Journal Proceedings, 1945, 41(1), 245.
79 American Concrete Institute. Building Code Requirements for Structural Concrete and Commentary ACI 318-11, 2011.
80 Wang L, Guo F, Yang H, et al. Fractals, 2021, 29(2), 2140002.
81 Zhao Y R, Wang Z H, Wang L, et al. Journal of Building Materials, 2019(1), 45(in Chinese).
赵燕茹, 王志慧, 王磊, 等. 建筑材料学报, 2019(1), 45.
82 Zhao Y R, Liu F F, Wang L, et al. Materials Reports, 2020, 34(12), 12064(in Chinese).
赵燕茹, 刘芳芳, 王磊, 等. 材料导报, 2020, 34(12), 12064.
83 Ren B. Mechanical properties and pore structure of hybrid fiber fly ash concrete under freeze-thaw cycles. Master's Thesis, Anhui University of Science and Technology, China, 2021(in Chinese).
任斌. 冻融循环下混杂纤维粉煤灰混凝土的力学性能与气孔结构. 硕士学位论文, 安徽理工大学, 2021.
84 Guan X B. Composites Science and Engineering, 2022(10), 38(in Chinese).
关喜彬. 复合材料科学与工程, 2022(10), 38.
85 Huang D G, Niu D T, Liu Y H, et al. Journal of Yangtze River Scientific Research Institute, 2023(2), 147(in Chinese).
黄大观, 牛荻涛, 刘云贺, 等. 长江科学院院报, 2023(2), 147.
86 An M, Wang Y, Yu Z. Construction and Building Materials, 2019, 198, 546.
87 Powers T C, Brownyard T L. Journal of American Concrete Institute, 1947, 18, 933.
88 Jin S, Zhang J, Huang B. Construction and Building Materials, 2013, 47, 126.
89 ASTM, Standard ASTM C666/666M-15. Standard test method for resis-tance of concrete to rapid freezing and thawing, West Conshohocken, PA, USA, 2015.
90 Zeng Q, Luo M, Pang X, et al. Applied Surface Science, 2013, 282, 302.
91 Yu P, Duan Y H, Chen E, et al. International Journal of Heat and Mass Transfer, 2018, 126, 432.
92 Tang S W, He Z, Cai X H, et al. Construction and Building Materials, 2017, 143, 395.
93 Mandelbrot B B, Wheeler J A. American Journal of Physics, 1983, 51(3), 286.
94 Winslow D N. Cement and Concrete Research, 1985, 15(5), 817.
95 Pfeifer P, Avnir D. The Journal of chemical physics, 1983, 79(7), 3558.
96 Zeng Q, Li K, Fen-Chong T, et al. Applied Surface Science, 2010, 257(3), 762.
97 Ji X, Chan S Y N, Feng N. Cement and Concrete Research, 1997, 27(11), 1691.
98 Tian Z H, Gu C S. In: Aerospace Division International Conference. Long Beach, CA, USA, 2008, pp.1.
99 Arandigoyen M, Alvarez J I. Cement and Concrete Research, 2007, 37(5), 767.
100 Wang Y, Diamond S. Cement and Concrete Research, 2001, 31(10), 1385.
101 Neimark A. Physica A: Statistical Mechanics and its Applications, 1992, 191(1-4), 258.
102 Zhang B, Li S. Industrial & Engineering Chemistry Research, 1995, 34, 1383.
103 Kim J, Choi Y C, Choi S. Applied Surface Science, 2018, 428, 304.
104 Vordos N, Giannakopoulos S, Vansant E F, et al. International Urology and Nephrology, 2018, 50(10), 1779.
105 Liu H, Zhang Y, Tong R, et al. Advances in Civil Engineering, 2020, 2020, 1243074.
106 Zhu J, Zhang R, Zhang Y, et al. Scientific Reports, 2019, 9, 17191.
107 Atzeni C, Pia G, Sanna U, et al. Construction and Building Materials, 2008, 22, 1607.
108 Jin S S, Zhang J X, Chen C Z, et al. Joural of Building Materials, 2011, 14(1), 92 (in Chinese).
金珊珊, 张金喜, 陈春珍, 等. 建筑材料学报, 2011, 14(1), 92.
109 Hu W. Modeling the Influence of composition and pore structure on mechanical properties of autoclaved cellular concrete. Ph. D. Thesis, University of Pittsburgh, Pittsburgh, PA, USA, 1997.
110 Kang S T, Kim S W, Park J J, et al. Journal of the Korea Institute for Structural Maintenance and Inspection, 2008, 12(3), 101.
111 Sun W, Wan Y L. Applied Mechanics and Materials, 2014, 584, 1449.
112 Wang J, Peng G. In: 2011 international conference on remote sensing, environment and transportation engineering. Nanjing, 2011, pp.5960.
113 Wang Y, Liu F, Yu J, et al. Construction and Building Materials, 2020, 251, 118917.
114 Yu K, Li L, Yu J, et al. Construction and Building Materials, 2018, 165, 346.
115 Yu J, Ye J, Zhao B, et al. Journal of Structural Engineering, 2019, 145(6), 04019042.
116 Dong F, Yu J, Zhan K, et al. Advances in Structural Engineering, 2020, 23(11), 2373.
117 Wang Y, Wei L, Yu J, et al. Cement and Concrete Composites, 2019, 97, 248.
118 Son M, Kim G, Kim H, et al. Cement and Concrete Composites, 2020, 106, 103482.
119 Yu J, Chen Y, Leung C K Y. Composite Structures, 2019, 226, 111198.
120 Kim M J, Yoo D Y, Yoon Y S. Journal of Materials Research and Technology, 2019, 8(2), 1835.
121 Yun H D, Kim S W, Lee Y O, et al. Cold Regions Science and Technology, 2011, 67(1-2), 49.
122 Luo D, Wang Y, Niu D. Advances in Civil Engineering, 2020, 2020, 21.
123 Xi X, Yang S, Li C Q. Cement and Concrete Research, 2018, 108, 87.
124 Kosa K, Naaman A E, Hansen W. Materials Journal, 1991, 88(3), 310.
125 Lepech M D, Li V C. Restoration of Buildings and Monuments, 2006, 12(2), 119.
126 Rokugo K, Moriyama M, Kato H, et al. In: 7th International RILEM Symposium on Fiber Reinforced Concrete: Design and Applications. Chennai, India, 2008.
127 Ahmed S F U, Maalej M. Construction and Building Materials, 2009, 23(1), 96.
128 Banthia N, Sheng J. Cement and Concrete Composites, 1996, 18(4), 251.
129 Li V C, Wu C, Wang S, et al. Materials Journal, 2002, 99(5), 463.
130 Wang S, Li V C. ACI Materials Journal, 2006, 103(2), 97.
131 Salem R M, Burdette E G. Jackson N M. Materials Journal, 2003, 100(3), 216.
132 Kesner K E, Billington S L, Douglas K S. Materials Journal, 2003, 100(5), 381.
133 Hsie M, Tu C, Song P S. Materials Science and Engineering: A, 2008, 494(1-2), 153.
134 Choi Y, Yuan R L. Cement and Concrete Research, 2005, 35(8), 1587.
135 Chen X, Xu L, Wu S. Journal of Materials in Civil Engineering, 2016, 28(2), 04015110.
136 Li V C, Stang H, Krenchel H. Materials and Structures, 1993, 26(8), 486.
137 Zhu W, Bartos P J M. Cement and Concrete Research, 1997, 27(11), 1701.
138 Li M, Li V C. Materials and Structures, 2013, 46, 405.
139 Ahmet Çavdar. Composites: Part B, 2014, 58, 463.
140 Ji Y, Zou Y, Ma Y, et al. Materials, 2022, 15, 2226.
141 Lu J, Liu J. Construction and Building Materials, 2022, 350, 128887.
142 Li Y, Shen X D. Engineering Mechanics, 2009(S1), 81(in Chinese).
李燕, 申向东. 工程力学, 2009(S1), 81.
143 Mindess S. MRS Online Proceedings Library, 1984, 42, 53.
144 Jambor J. In: Proceedings of the International Conference on Pore Structure and Properties of Materials. Prague, Czechoslovakia, 1973, pp.D75.
145 Sereda P J, Feldman R F, Ramachandran V S. In: 7th International Congress on the Chemistry of Cement. Paris, 1980, pp.VI. 1. 3.
146 Zaitsev Y. In: 7th International Congress on the Chemistry of Cement. Paris, 1980, pp.VI. 176.
147 Liu C, Zhang R, Liu H. Construction and Building Materials, 2022, 314, 125572.
148 Nguyen T T, Bui H H. Materials & Design, 2017, 130, 103.
149 Balshin M Y. Doklady Akademii Nauk SSSR, 1949, 67(5), 831.
150 Huang J, Li W. Fractal and Fractional, 2021, 5(4), 164.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[7] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[8] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[9] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[10] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[11] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[12] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[13] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[14] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[15] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed