Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 23010123-16    https://doi.org/10.11896/cldb.23010123
  金属与金属基复合材料 |
纳米结构金属材料制备工艺及强化稳定方式研究进展
张伟1,2, 杨旭2, 陈晓通2, 任军强1,2, 卢学峰1,2,*
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
Research Progress in Preparation Technology and Strengthening and Stabilizing Methods of Nanostructured Metal Materials
ZHANG Wei1,2, YANG Xu2, CHEN Xiaotong2, REN Junqiang1,2, LU Xuefeng1,2,*
1 State Key Laboratory for Advanced Processing and Reuse of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 89498KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,国民经济快速稳定发展,科学技术成为生产制造的第一生产力。在材料领域中,纳米结构金属材料所表现出的优异综合性能和在工业生产制造中的广泛应用使其成为新材料领域的研究热点。本文结合目前最新研究成果,总结了纳米结构金属材料的制备工艺和强化稳定方式及其机制的研究现状和发展前景。首先,介绍了纳米结构金属材料的制备工艺,阐述了不同工艺的制备过程、原理及优缺点并进行对比。其次,以纳米结构金属材料的研究现状为基础介绍目前纳米结构金属材料的各种强化与稳定方式的研究进展,探究分析各种强化与稳定方式的变形机制和微观机理。最后,结合最新研究进展,对纳米结构金属材料的制备、强化稳定方式及工业生产应用等方面存在的问题进行归纳,并展望了纳米结构金属材料未来发展方向和工业生产制造领域的广泛应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张伟
杨旭
陈晓通
任军强
卢学峰
关键词:  纳米结构金属材料  制备工艺  强化方式  热稳定性  微观机制    
Abstract: In recent years, with the rapid and stable development of the national economy, science and technology have become the first productive force in production and manufacturing. In the field of materials, nanostructured metal materials exhibit excellent comprehensive properties and have been used in industrial production and manufacturing widely, making it become a research hotspot in the field of new materials. Based on the latest research achievements, this article summarizes the research status and development prospects of the preparation process, strengt-hening and stabilization methods and mechanisms of nanostructured metal materials. Firstly, the preparation processes of nanostructured metal materials are introduced, and the preparation processes, principles, advantages and disadvantages of different processes are described and compared. Secondly, based on the current research status, the research progress of various strengthening and stabilizing methods of nanostructured metal materials is introduced, and the deformation mechanisms and microscopic mechanisms of various strengthening and stabilizing met-hods are explored and analyzed. Finally, based on the latest research progress, the existing problems in the preparation, strengthening and stabilization methods, and industrial production applications of nanostructured metal materials are summarized, we also prospected the future deve-lopment direction of nanostructured metal materials and their broad applications in industrial production and manufacturing fields.
Key words:  nanostructured metal materials    preparation process    strengthening method    thermal stability    micro-mechanism
发布日期:  2023-09-06
ZTFLH:  TG113  
基金资助: 国家重点研发计划(2017YFA0700701);国家自然科学基金(52061025);甘肃省教育厅“双一流”科研重点项目(GSSYLXM-03)
通讯作者:  *卢学峰,兰州理工大学教授、博士研究生导师,2014年毕业于西安交通大学,获得材料科学与工程专业博士学位,主要从事先进材料设计与计算研究,主持两项国家自然科学基金项目、两项中国博士后科学基金。lxfeng@lut.edu.cn   
作者简介:  张伟,2021年6月于兰州理工大学获得学士学位,现为兰州理工大学材料科学与工程学院硕士研究生,目前主要研究领域为梯度异质结构纳米材料的模拟研究。
引用本文:    
张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
ZHANG Wei, YANG Xu, CHEN Xiaotong, REN Junqiang, LU Xuefeng. Research Progress in Preparation Technology and Strengthening and Stabilizing Methods of Nanostructured Metal Materials. Materials Reports, 2023, 37(S1): 23010123-16.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010123  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/23010123
1 Li S C, Yu Q, Pu J J, et al. Engineering Fracture Mechanics, 2018, 200, 451.
2 Byungmin Ahn. Metal, 2018, 8, 855.
3 Birringer R, Gleiter H, Klein H P, et al. Physics Letters A, 1984, 102, 365.
4 André P, Benzerga A A, Thomas P. Acta Materialia, 2016, 107, 508.
5 Fu L, Lin L, Luo Y R, et al. Materials Reports, 2021, 35(3), 3114(in Chinese).
付磊, 林莉, 罗云蓉, 等. 材料导报, 2021, 35(3), 3114.
6 Chen Z. China Metal Bulletin, 2017(5), 43(in Chinese).
陈真. 中国金属通报, 2017(5), 43.
7 Chen S, Aitken Z H, Wu Z, et al. Materials Science and Engineering: A, 2020, 773, 138873.
8 Tian D, Zhou C J, He J H. Fractals, 2018, 26, 1850083.
9 Niu Y M, Lai Y J, Zhou B Y, et al. Journal of Functional Materials, 2018, 49(5), 5041(in Chinese).
牛雨萌, 赖奕坚, 赵斌元, 等. 功能材料, 2018, 49(5), 5041.
10 Lu W C, Ou S F, Lin M H, et al. Journal of Alloys and Compounds, 2016, 664, 193.
11 Li C, Cui W F, Zhang Y S. Metals and Materials International, 2017, 23, 512.
12 Asgharzadeh H. Transactions of the Indian Institute of Metals. 2016, 69, 1359.
13 Zhang K, Wang Z B, Lu K. Materials Research Letters, 2017, 5, 258.
14 Wang P F, Han Z, Lu K. Wear, 2018, 402-403, 100.
15 Kushwaha A K, Misra M, Menezes P L. Nanomaterials, 2022, 12, 3618.
16 Ivanov K V, Glazkova E A, Fortuna S V, et al. Russian Journal of Non-Ferrous Metals, 2019, 60, 524.
17 Aline Silva Magalhães, Carlos Eduardo dos Santos, Aline Oliveira Vasconcelos Ferreira, et al. Materials Science and Technology, 2019, 35, 2120.
18 Young Gun Ko, Seung Namgung, Byung Uk Lee, et al. Journal of Alloys and Compounds, 2010, 504, S448.
19 Guo F, Dong H P, Huang W J, et al. Journal of Alloys and Compounds, 2021, 864, 158293.
20 Praveen S, Bae J W, Asghari-Rad P, et al. Materials Science and Engineering: A, 2018, 734, 338.
21 Klement W, Willens R H, Duwez P. Nature, 1960, 187, 869.
22 Yoshizawa Y, Oguma S, Yamauchi K. Journal of Applied Physics, 1988, 64, 6044.
23 Shen X M, Zhu Z J, Xu Z Y, et al. Journal of the Chinese Ceramic Society, 2022, 50(5), 1292(in Chinese).
申星梅, 朱宗建, 徐致远, 等. 硅酸盐学报, 2022, 50(5), 1292
24 Gao J Y, He T, Du X Y, et al. Forging & Stamping Technology, 2020, 45(10), 92.
高建烨, 何涛, 杜向阳, 等. 锻压技术, 2020, 45(10), 92.
25 Qu S D, You Z S, Gu R C, et al. Materials Science and Engineering: A, 2020, 782, 139260.
26 Ferrasse S, Segal V M, Hartwig K T, et al. Journal of Materials Research, 1997, 12, 1253.
27 Valiev R Z, Ivanisenko Y V, Rauch E F, et al. Acta Materialia, 1996, 44, 4705.
28 Tański T, Snopiński P, Prusik K, et al. Materials Characterization, 2017, 133, 185.
29 Patel P, Mohanan M, Sarvaiya V, et al. Transactions of the Indian Institute of Metals, 2018, 71, 2605.
30 Jiang J H, Ma A, Saito N, et al. Journal of Rare Earths, 2009, 27(5), 848.
31 Azushima A, Aoki K. CIRP Annals, 2002, 51, 227.
32 Khan W S, Cao C, Nabi G, et al. Journal of Alloys and Compounds, 2010, 506, 666.
33 Acosta-Silva Y J, Castanedo-Perez R, Torres-Delgado G, et al. Superlattices and Microstructures, 2016, 100, 148
34 Zong R L, Wen S P, Zeng F, et al. Journal of Alloys and Compounds, 2008, 464, 544.
35 Zhao J L, Baibuz E, Vernieres J, et al. ACS Nano, 2016, 10, 4684.
36 Qin W, Fu L C, Zhu J J, et al. Applied Surface Science, 2018, 443, 97.
37 Su H Y, Liu J R, Wang H, et al. Physics of the Solid State, 2020, 61, 2260.
38 Yin J Z, Xu Q Q, Zhang C J, et al. Acta Materiae Compositae Sinica, 2009, 26(2), 25(in Chinese).
银建中, 徐琴琴, 张传杰, 等. 复合材料学报, 2009, 26(2), 25.
39 Li P, Liu N, Yu H B, et al. Scientific Reports, 2016, 6, 28035.
40 Makowski T, Kowalczyk D, Fortuniak W, et al. Cellulose, 2015, 22, 3063.
41 Luo J, Ren H T, Zhang X, et al. AIP Advances, 2020, 10, 015337.
42 Rovena Veronica Pascu, George Epurescu, Iulian Boerasu, et al. Applied Surface Science, 2022, 606, 154994.
43 Han B, Yang G Q, Yan L M, et al. Guangdong Chemical Industry, 2004, 31(1), 9(in Chinese).
韩冰, 杨桂琴, 严乐美, 等. 广东化工, 2004, 31(1), 9.
44 Hu W Q, Dong Z, Ma Z Q, et al. Journal of Alloys and Compounds, 2020, 821, 15346.
45 Zhou X L, Feng Z Q, Zhu L L, et al. Nature, 2020, 579, 67.
46 Zheng S J, Yan Z, Kong X F, et al. Acta Metallurgica Sinica, 2022, 58(6), 709(in Chinese).
郑士建, 闫哲, 孔祥飞, 等. 金属学报, 2022, 58(6), 709.
47 Lei R S, Wang M P, Guo M X, et al. Materials Reports, 2007(S1), 20(in Chinese).
雷若姗, 汪明朴, 郭明星, 等. 材料导报, 2007(S1), 20.
48 Yagi T, Hirayama T, Matsuoka T, et al. Metallurgical and Materials Transactions A, 2016, 48, 1366.
49 Hu J, Liu W G, Wang B. Science China—Physics, Mechanics & Astronomy, 2020, 63, 104612.
50 Gong P, Wang X, Yao K F. Journal of Materials Science, 2016, 51, 5321.
51 Ammar H R, Baig M, Seokh A H, et al. Transactions of Nonferrous Metals Society of China, 2021, 31, 11.
52 Wang M X, Zhu H, Yang G J, et al. Materials & Design, 2021, 198, 109359.
53 Medyanik S N, Shao S. Computational Materials Science, 2009, 45, 1129.
54 Yang W F, Gong M Y, Yao J H, et al. Scripta Materialia, 2021, 200, 113917.
55 Skiba N V. Reviews on Advanced Materials Science, 2019, 55, 21.
56 Lu L, Chen X H, Huang X X, et al. China Basic Science, 2010, 12(1), 16(in Chinese).
卢磊, 陈先华, 黄晓旭, 等. 中国基础科学. 2010, 12(1), 16.
57 Jin Z H, Li X Y, Lu k. Physical Review Letters. 2021, 127, 136101.
58 Xu W, Zhang B, Li X Y, et al. Science, 2021, 373, 683.
59 Lu K. Science, 2014, 345, 1455.
60 Fan J T, Zhu L L, Lu J. Scripta Materialia, 2020, 184, 41.
61 Bae J W, Asghari-Rad P, Amanov A, et al. Materials Science and Engineering: A, 2021, 826, 141966.
62 Lu W G, Liu Q S, Sun Z Y, et al. Journal of the American Chemical Society, 2008, 130, 6983.
63 Li X Y, Jin Z H, Zhou X, et al. Science, 2020, 370, 831.
64 Li X Y, Lu K. Nature Materials, 2017, 16, 700.
65 Wei D X, Wu G, Wang L Q, et al. Journal of Materials Science & Technology, 2022, 129, 251.
66 Xu S D, Ren X D, Zhou W F, et al. Chinese Journal of Lasers, 2016, 43(1), 46(in Chinese).
徐士东, 任旭东, 周王凡, 等. 中国激光, 2016, 43(1), 46.
67 Gao C H. Journal of Jiangsu University(Natural Science Edition, 2001, 22(6), 45(in Chinese).
高春华, 江苏大学学报:自然科学版, 2001, 22(6), 45.
68 Soifer Y M, Rapoport A V. Materials Letters, 2002, 56, 127.
69 Jonathan K, Michel J R H,Jason T, et al. Scripta Materialia, 2022, 218, 114799.
70 Sneha N N, Stephen M W. Journal of Materials Science, 2020, 55, 2661.
71 Zhou X, Li X Y, Lu K. Science, 2018, 360, 526.
72 Wang Y F, Zhu Y T, Yu Z J, et al. Acta Materialia, 2022, 241, 118395.
73 Xu L, Wang Y Y, Chih-Hsiang H, et al. Advanced Materials Interfaces, 2021, 8, 2001850.
74 Wang Y F, Huang C X, He Q, et al. Scripta Materialia, 2019, 170, 76.
75 Wang Y F, Ma X L, Guo F Q, et. al. Materials & Design, 2023, 225, 111593.
76 Li J G, Zhang Q, Huang R R, et. al. Scripta Materialia, 2020, 186, 304.
77 Chen Y, Gao N, Sha G, et al. Acta Materialia, 2016, 109, 202.
78 Chen Y, Gao N, Sha G, et al. Materials Science and Engineering: A, 2015, 627, 10.
[1] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[2] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[3] 符明君, 张勇, 张耿飞, 王凯, 贾致远, 王娜. 钼及钼合金改性硅化物高温抗氧化涂层研究现状[J]. 材料导报, 2023, 37(3): 21030219-8.
[4] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[5] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[6] 郭涛, 李硕, 姚雅萱, 南波航, 徐桂英, 任玲玲. Bi-Te基薄膜热电材料的研究进展[J]. 材料导报, 2022, 36(4): 20040035-13.
[7] 薛新, 吴芳, 郑超, 魏雨函, 陈小超, 白鸿柏. 金属橡胶阻尼软夹芯结构材料研究进展[J]. 材料导报, 2022, 36(22): 22040029-11.
[8] 王博磊, 钟和香, 张晶, 李夺, 王鹤臻, 周广波, 赵思阳, 王新雨, 潘立卫. 陶瓷基整体式催化剂催化燃烧挥发性有机物的研究进展[J]. 材料导报, 2022, 36(14): 20120169-9.
[9] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[10] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[11] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[12] 刘哲, 刘勇, 高广志, 李奇贵, 包阳阳, 马凤森. Plackett-Burman设计结合响应面法优化可溶性微针的制备工艺[J]. 材料导报, 2021, 35(z2): 593-599.
[13] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[14] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[15] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed