Please wait a minute...
材料导报  2023, Vol. 37 Issue (8): 21110053-8    https://doi.org/10.11896/cldb.21110053
  高分子与聚合物基复合材料 |
TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征
史书源, 安秋凤*, 邱甲云
陕西科技大学化学与化工学院,陕西省轻化工助剂重点实验室,西安 710021
Preparation and Characterization of TiO2/Organic Silica Sol Modified Fluorinated Poly(styrene-acrylate) Emulsion
SHI Shuyuan, AN Qiufeng*, QIU Jiayun
Shaanxi Provincial Key Laboratory of Light Chemical Additives, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
下载:  全 文 ( PDF ) ( 8493KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为改善含氟苯丙乳液的疏水性、热稳定性及力学性能,以钛酸丁酯(TBT)、γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570)为原料,通过溶胶-凝胶法制备出TiO2/有机硅溶胶(TS),并将其与丙烯酸丁酯(BA)、苯乙烯(ST)、甲基丙烯酸十二氟庚酯(G04)及其他丙烯酸类功能单体作为主要原料,通过半连续加料法及种子乳液聚合,制备出一种TiO2/有机硅溶胶改性的含氟苯丙乳液(TS-BHSAG)。探讨了不同TS含量对乳液转化率的影响,利用FTIR、纳米粒度仪、稳定性分析仪、XPS、XRD、SEM、AFM、TGA表征研究了乳液及乳胶膜的结构组成及应用性能。结果表明,当TS含量逐渐增加时,乳液转化率及稳定性呈持续下降趋势;随着TS含量增加,乳液平均粒径从55.58 nm增至106.16 nm;FTIR及XPS结果显示,TS-BHSAG乳胶膜中形成了Si-O-Si、Si-O-Ti、CF2键,证实TS被初步合成,且其与G04一起被引入聚合物中;XRD结果表明,TS是以无定形相分散于丙烯酸树脂基体中;通过SEM与AFM观察到,TS纳米粒子在乳胶膜表面构成峰状粗糙结构,增强了乳液的疏水性能;TGA结果表明,在热失重为10%及50%时,TS-BHSAG的热分解温度分别为380.59 ℃、415.39 ℃,在600 ℃时,乳胶膜的残余质量分数从4.78%增加到8.56%;当TS添加量为3%时,TS-BHSAG乳胶膜的接触角为121°,附着力为1级,耐冲击性能为50 cm,硬度为2H,吸水率为6.1%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史书源
安秋凤
邱甲云
关键词:  TiO2/有机硅改性  乳液聚合  含氟苯丙乳液  疏水性  热稳定性    
Abstract: In order to improve the hydrophobicity, thermal stability and mechanical properties of the fluorine-containing styrene-acrylic emulsion, Using butyl titanate (TBT) and γ-methacryloyloxypropyltrimethoxysilane (KH-570) as raw materials, TiO2/organosilica sol (TS) was prepared by sol-gel method. With butyl acrylate (BA), styrene (ST), dodecafluoroheptyl methacrylate (G04) and other acrylic functional monomers as the main raw materials through semi-continuous feeding method and seed emulsion polymerization, a fluorine-containing styrene-acrylic emulsion (TS-BHSAG) modified by TiO2/organosilicon sol was prepared. The effects of different TS contents on the emulsion conversion were discussed. The structure composition and application properties of the emulsion and latex film were studied by FTIR, nanometer particle size analyzer, stability analyzer, XPS, XRD, SEM, AFM, and TGA. The results show that when the TS content gradually increased, the emulsion conversion rate and stability showed a continuous downward trend. As the TS content increase, the average particle size of the emulsion increased from 55.58 nm to 106.16 nm. FTIR and XPS results show that Si-O-Si, Si-O-Ti, CF2 bonds were formed in the TS-BHSAG latex film, confirming the fact that preliminary synthesis of TS has been achieved, and it has been introduced into the polymer with G04. XRD results show that TS was dispersed in the acrylic resin matrix in an amorphous phase. It was observed by SEM and AFM that TS nanoparticles formed a peak-like rough structure on the surface of the latex film, which enhanced the hydrophobicity. TGA results show that when the thermal weight loss is 10% and 50%, the thermal decomposition temperatures of TS-BHSAG are 380.59 ℃ and 415.39 ℃, while at 600 ℃ the residual content increased from 4.78% to 8.56%. When the amount of TS added is 3%, the contact angle of the TS-BHSAG latex film is 121°, the adhesion is grade 1, the impact resistance is 50 cm, the hardness is 2H, and the water absorption rate is 6.1%.
Key words:  TiO2/organosilicon modification    emulsion polymerization    fluorinated styrene acrylic emulsion    hydrophobicity    thermal stability
出版日期:  2023-04-25      发布日期:  2023-04-24
ZTFLH:  O63  
基金资助: 陕西省重点研发计划项目(2020ZDLGY13-11);国家科技部重点研发计划项目(2017YFB0307700)
通讯作者:  *安秋凤,陕西科技大学化学与化工学院教授、博士研究生导师。1994年西北轻工业学院应用化学专业硕士毕业,2001年华东理工大学应用化学专业博士毕业,2008年西北大学博士后流动站博士后,1984年至今于陕西科技大学任教。目前主要从事功能性有机硅材料与助剂的合成、应用及基础理论研究。发表有机氟硅方面的学术研究论文100余篇,包括Progress in Chemistry、Acta Polymerica Sinica、Chemical Journal of Chinese Universities、Progress in Organic Coatings等。395439701@qq.com   
作者简介:  史书源,目前于陕西科技大学化学与化工学院攻读硕士学位,在安秋凤教授的指导下进行研究。目前主要研究领域为水性含氟丙烯酸酯乳液的合成、改性及在水性涂料中的应用。
引用本文:    
史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
SHI Shuyuan, AN Qiufeng, QIU Jiayun. Preparation and Characterization of TiO2/Organic Silica Sol Modified Fluorinated Poly(styrene-acrylate) Emulsion. Materials Reports, 2023, 37(8): 21110053-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110053  或          http://www.mater-rep.com/CN/Y2023/V37/I8/21110053
1 Ni W N, You B, Tang L Y. Materials Protection, 2018, 51(4), 94(in Chinese).
倪伟男, 游波, 唐龙燕. 材料保护, 2018, 51(4), 94.
2 Du Y B, Zhu L Q, Liu H C. Journal of Beijing University of Aeronautics and Astronautics, 2004(10), 1003(in Chinese).
杜岩滨, 朱立群, 刘慧丛. 北京航空航天大学学报, 2004(10), 1003.
3 Zhang Z M, Chen Y, Sun Z X. Surface Technology, 2021, 50(1), 277(in Chinese).
张秩鸣, 陈寅, 孙振新. 表面技术, 2021, 50(1), 277.
4 Luo H, Ding J, Huang Z, et al. Composites Part B:Engineering, 2018, 155, 288.
5 Yu S W, Xiao S J, Zhang P B, et al. Advanced Materials Research, 2013, 750, 3.
6 Guan Y D, Sun C L, Zhang S Z. Plating & Finishing, 2013, 32(5), 63(in Chinese).
关迎东, 孙春龙, 张世珍. 电镀与涂饰, 2013, 32(5), 63.
7 Yang L L, Su Q X, Di K Y. Paint Industry, 2019, 49(9), 41(in Chinese).
杨璐璐, 宿倩雪, 狄凯莹. 涂料工业, 2019, 49(9), 41.
8 Zhang T T, Yin J L, Su Q X. Polyurethane Industry, 2019, 34(3), 19(in Chinese).
张甜甜, 尹金雷, 宿倩雪. 聚氨酯工业, 2019, 34(3), 19.
9 Wang Z X, Pei S H, Tao Y. New Chemical Materials, 2019, 47(10), 250(in Chinese).
王梓旭, 裴世红, 陶洋. 化工新型材料, 2019, 47(10), 250.
10 Xu G L, Liang Y, Yang J. Polymer Materials Science and Engineering, 2012, 28(8), 5(in Chinese).
徐桂龙, 梁云, 杨进. 高分子材料科学与工程, 2012, 28(8), 5.
11 Zhao J S, Wei G, Qiao N. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2012, 39(4), 47(in Chinese).
赵佳树, 魏刚, 乔宁. 北京化工大学学报(自然科学版), 2012, 39(4), 47.
12 Ma C, Li Y, Zhang J, et al. Journal of Coatings Technology and Research, 2021, 18(2), 415.
13 Li Y D, Lu J S, Zhong F. Journal of Aeronautical Materials, 2021, 41(1), 60(in Chinese).
李映德, 卢金山, 钟凡. 航空材料学报, 2021, 41(1), 60.
14 Singh L P, Agarwal S K, Bhattacharyya S K, et al. Nanomaterials and Nanotechnology, 2011, 1(1), 44.
15 Wang Y, Li X, Li M, et al. Journal of Sol-Gel Science and Technology, 2014, 70(1), 1.
16 Zheng N, Liu K, Li X, et al. Micro & Nano Letters, 2012, 7(6), 526.
17 Zhang Z, Chen Y, Liu J. Equipment Environmental Engineering, 2016, 13(4), 1(in Chinese).
张昭, 陈宇, 刘姣. 装备环境工程, 2016, 13(4), 1.
18 Shanmugam S, Ketpang K, Aziz M A, et al. Electrochimica Acta, 2021, 384, 138407.
19 Wang D N, Nie J Y, Zhao Y S. Polymer Materials Science and Enginee-ring, 2020, 36(8), 58(in Chinese).
王丹妮, 聂景怡, 赵永生. 高分子材料科学与工程, 2020, 36(8), 58.
20 Wang X, Sui Z H, San J L. Wool Spinning Technology, 2020, 48(8), 60(in Chinese).
王旭, 隋智慧, 伞景龙. 毛纺科技, 2020, 48(8), 60.
21 Gu J, Xie H D. Energy Chemical Industry, 2018, 39(1), 12(in Chinese).
顾靖, 谢洪德. 能源化工, 2018, 39(1), 12.
22 Zeng X R, Wu Z Y, Hou Y J, et al. Modern polymer testing technology, South China University of Technology Press, China, 2007, pp. 57(in Chinese).
曾幸荣, 吴振耀, 侯友军, 等. 高分子近代测试技术, 华南理工大学出版社, 2007, pp. 57.
23 Cai A M, Ye C X, Li H Q. Inorganic Salt Industry, 2010, 42(3), 34(in Chinese).
蔡阿满, 叶超贤, 李红强. 无机盐工业, 2010, 42(3), 34.
24 Zhang Q, Shen Y D, Yang K. Fine Chemicals, 2021, 38(1), 192(in Chinese).
张倩, 沈一丁, 杨凯. 精细化工, 2021, 38(1), 192.
25 Fan G D, Zhang G X, Feng X Y. Progress in Chemical Industry, 2017, 36(8), 3125(in Chinese).
樊国栋, 张国贤, 冯昕钰. 化工进展, 2017, 36(8), 3125.
26 Chen T, Yang S D, Li L L. Polymer Bulletin, 2020(7), 53(in Chinese).
陈涛, 杨胜都, 李亮亮. 高分子通报, 2020(7), 53.
[1] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[2] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[3] 许骏杰, 康嘉杰, 岳文, 周永宽, 朱丽娜, 付志强, 佘丁顺. 纳秒激光制备Fe基非晶合金涂层表面织构的疏水性研究[J]. 材料导报, 2022, 36(7): 21120134-6.
[4] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[5] 徐璐, 王华伟, 陈伟峰, 王宁, 曾超, 刘伯军, 张明耀. 接枝改性剂SBR-g-MS的组成结构设计与透明ABS树脂的性能研究[J]. 材料导报, 2022, 36(21): 21070096-6.
[6] 盛奥, 姜昊基, 赵亚欣, 魏忠, 李昊, 贾昊, 王贺云. F-ZIF-90/PDMS混合基质膜的制备及强化乙醇传递过程的研究[J]. 材料导报, 2022, 36(17): 21030316-6.
[7] 徐卓凡, 彭舒廷, 周鹤, 郭媛媛, 周国富, 徐雪珠. 含氟高分子涂料的合成及电润湿性能研究进展[J]. 材料导报, 2022, 36(16): 20110218-15.
[8] 何辉, 张忠明, 姜勇刚, 冯军宗, 李良军, 冯坚. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(z2): 50-55.
[9] 汪苏平, 汪源, 胡志豪, 潘阳, 胡传山, 李正平, 高慧敏, 文轩. 乳液聚合法制备降黏型聚羧酸减水剂[J]. 材料导报, 2021, 35(z2): 163-166.
[10] 鞠帅威, 李艳辉, 张伟. 软磁性Co基块体非晶合金的研究进展[J]. 材料导报, 2021, 35(z2): 318-324.
[11] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[12] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[13] 孙鹏飞, 吕平, 黄微波, 张锐, 方志强, 桑英杰. 喷涂抗爆型聚脲钢筋混凝土板抗爆性能研究[J]. 材料导报, 2021, 35(z2): 642-648.
[14] 梁雷, 王彦玲, 刘斌, 李永飞, 汤龙皓. 含氟聚合物乳液的制备方法及在固液界面的应用[J]. 材料导报, 2021, 35(Z1): 586-593.
[15] 姜鹏程, 王周福, 王玺堂, 刘浩, 马妍. 不同气氛下类石墨相氮化碳的合成及热稳定性能[J]. 材料导报, 2021, 35(6): 6048-6053.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed