Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 21120134-6    https://doi.org/10.11896/cldb.21120134
  表面工程材料与技术 |
纳秒激光制备Fe基非晶合金涂层表面织构的疏水性研究
许骏杰1,2, 康嘉杰1,3,4, 岳文1,3, 周永宽1, 朱丽娜1,3, 付志强1,3, 佘丁顺1,3
1 中国地质大学(北京)工程技术学院,北京 100083
2 中国航发北京航空材料研究院先进高温结构材料重点实验室,北京 100095
3 中国地质大学(北京)郑州研究院,郑州 451283
4 浙江清华柔性电子技术研究院,浙江 嘉兴 314000
Study on Hydrophobicity of Surface Texture on Fe-based Amorphous Alloy Coating Treated by Nanosecond Laser
XU Junjie1,2, KANG Jiajie1,3,4, YUE Wen1,3, ZHOU Yongkuan1, ZHU Lina1,3, FU Zhiqiang1,3, SHE Dingshun1,3
1 School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China
2 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
3 Zhengzhou Institute, China University of Geosciences (Beijing), Zhengzhou 451283, China
4 Institute of Flexible Electronics Technology of Tsinghua, Jiaxing 314000, Zhejiang, China
下载:  全 文 ( PDF ) ( 7121KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用冷喷涂技术在35CrMo钢基体上制备了Fe-Cr-Mo-C-B-Y体系非晶涂层,通过纳秒脉冲激光构造了规则排布的乳突、点阵和凹槽结构。结果表明:涂层的表面特征随激光织构的结构及间距的变化而变化。高通量脉冲激光作用下,涂层表面沿激光路径产生更大的凸起物,同时在凸起物上覆盖着由熔融粒子飞溅形成的颗粒物。织构表面同时存在织构、颗粒物、抛光表面三种结构。经过激光加工处理后的涂层表面具有优异的疏水性,与去离子水和钻井液的接触角分别提升至(151.6±0.3)°和(145.9±0.4)°。随着点阵及凹槽织构间距的增加,涂层表面的润湿性从超疏水转向疏水,在间距最大时转变为亲水;乳突织构的间距变化对疏水性影响较小,即使间距增大到300 μm时涂层表面依旧能保持疏水性;同时涂层表面表现出疏水稳定性及低粘附性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许骏杰
康嘉杰
岳文
周永宽
朱丽娜
付志强
佘丁顺
关键词:  冷喷涂  Fe-Cr-Mo-C-B-Y非晶涂层  表面织构  疏水性    
Abstract: Fe-Cr-Mo-C-B-Y amorphous coatings were prepared on 35CrMo steel by cold spraying (CS) technique. The mastoid-like, dot and groove surface texture structures with regular arrangement were constructed by nanosecond laser. The result show that the surface characteristics of the coating vary with the laser texture structure and spacing. Under the action of high flux pulsed laser, the coating surface produces larger protrusions along the laser path, and the protrusions are covered with particles formed by the splashing structure of molten particles. Texture surface has texture, particle and polished surface at the same time. Besides, the coating surface after laser processing has excellent hydrophobicity, and the contact angle with deionized water and drilling fluid increase to (151.6±0.3)° and (145.9±0.4)° respectively. With the increase of lattice and groove texture spacing, the wettability changes from superhydrophobic to hydrophobic, and becomes hydrophilic when the spacing is maximum. The spacing change of mastoid-like texture has little effect on hydrophobicity, and even if the spacing increases to 300 μm, the coating surface can still keep hydrophobic. At the same time, the coating surface showed hydrophobic stability and low adhesion.
Key words:  cold spray    Fe-Cr-Mo-C-B-Y amorphous coating    surface texture    hydrophobicity
发布日期:  2022-04-07
ZTFLH:  TG142  
基金资助: 国家自然科学基金(52175196;41872183);装备发展部重点项目(61409230614)
通讯作者:  kangjiajie@cugb.edu.cn   
作者简介:  许骏杰,2018年6月和2021年6月于中国地质大学(北京)获得工学学士学位和硕士学位。主要从事非晶涂层超疏水性能方面的研究。
康嘉杰,2013年在中国地质大学(北京)获工学博士学位,2016年英国帝国理工学院访问学者。现为中国地质大学(北京)工程技术学院教授、博士研究生导师、机械工程系主任,中国机械工程学会表面工程分会青年学组副主任委员,中国机械工程学会摩擦学分会青年论坛组委会委员。迄今发表论文120余篇,其中SCI论文60余篇;授权国家发明专利16项;主持国家自然科学基金面上项目、北京市自然科学基金面上项目等科研项目10余项。主要从事表面工程和摩擦学方面的研究。
引用本文:    
许骏杰, 康嘉杰, 岳文, 周永宽, 朱丽娜, 付志强, 佘丁顺. 纳秒激光制备Fe基非晶合金涂层表面织构的疏水性研究[J]. 材料导报, 2022, 36(7): 21120134-6.
XU Junjie, KANG Jiajie, YUE Wen, ZHOU Yongkuan, ZHU Lina, FU Zhiqiang, SHE Dingshun. Study on Hydrophobicity of Surface Texture on Fe-based Amorphous Alloy Coating Treated by Nanosecond Laser. Materials Reports, 2022, 36(7): 21120134-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120134  或          http://www.mater-rep.com/CN/Y2022/V36/I7/21120134
1 Korkmaz S, Kariper I A. Journal of Non-Crystalline Solids, 2020, 527, 119753.
2 Li N, Chen W, Liu L. JOM, 2016, 68, 1246.
3 Klement W K, Willens R H, Duwez P.Nature, 1960, 187, 869.
4 Guo Y, Koga G Y, Jr A M J, et al. Materials & Design,2016,111,608.
5 Luo Q,Sun J Y, Wu X Y, et al. Surface & Coatings Technology, 2018, 334, 253.
6 Huang F, Kang J J, Yue W, et al. Materials Reports A: Review Papers, 2018, 32(11), 3789(in Chinese).
黄飞, 康嘉杰, 岳文, 等.材料导报:综述篇, 2018, 32(11), 3789.
7 Kumar A, Nayak S K, Sarkar K, et al. Surface & Coatings Technology, 2020, 397, 126058.
8 Xie L, Xiong X, Zeng Y, et al. Surface & Coatings Technology, 2019, 366, 146.
9 Su J, Kang J J, Yue W, et al. Materials Science and Technology, 2019, 35(8), 1.
10 Roach P, Shirtcliffe N J, Newton M I.Soft Matter, 2008, 4, 224.
11 Feng L, Li S H, Li Y S, et al. Advanced Materials, 2002, 14, 1857.
12 Zheng Y M, Gao X F, Jiang L.Soft Matter, 2007, 3, 178.
13 Liu F J, Wang L, Su Q, et al. Journal of the American Chemical Society, 2012, 131, 16948.
14 Xu M, Feng Y, Li Z L, et al. Journal of Alloys and Compounds, 2019, 781, 1175.
15 Li Z Z, Wang B, Qin X M, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 13747.
16 Choi C H, Ko D H, Park B, et al. Chemical Engineering Journal, 2019, 358, 1594.
17 Li H F, Wang Y B, Chen Y, et al. Materials Letters, 2010, 64, 1462.
18 Williams E, Lavery N.Journal of Materials Processing Technology, 2017, 247, 73.
19 Luo X, Liu W J, Zhang H J, et al. Chinese Journal of Lasers, 2021, 48(15), 146(in Chinese).
罗晓, 刘伟建, 张红军,等. 中国激光, 2021, 48(15), 146.
20 Bai X, Chen F.Acta Optica Sinica, 2021, 41(1), 218(in Chinese).
白雪, 陈烽.光学学报, 2021, 41(1), 218.
21 Xu J J, Kang J J, Yue W, et al. Journal of Non-Crystalline Solids, 2021, 573, 121136.
22 Pan R, Zhang H J, Zhong M L. Chinese Journal of Lasers, 2021, 48(2), 121(in Chinese).
潘瑞, 张红军, 钟敏霖.中国激光, 2021, 48(2), 121.
23 Li J, Zhao S C, Du F, et al. Journal of Materials Engineering, 2018, 46(5), 86(in Chinese).
李晶, 赵世才, 杜锋,等. 材料工程, 2018, 46(5), 86.
24 Qiao J, Zhu L N, Yue W, et al. Surface & Coatings Technology, 2018, 334, 429.
25 Xu J J, Su J, Kang J J, et al. Drilling Engineering, 2021, 48(4), 21(in Chinese).
许骏杰, 苏娟, 康嘉杰. 钻探工程, 2021, 48(4), 21.
26 Wenzel R N, Robert N. Transactions of the Faraday Society, 1936, 28(8), 988.
27 Cassie A, Baxter S.Transactions of the Faraday Society, 1944, 40, 546.
[1] 陈文元, 谈辉, 程军, 朱圣宇, 杨军. 冷喷涂铜基复合涂层摩擦学性能研究进展与展望[J]. 材料导报, 2022, 36(7): 21080083-7.
[2] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[3] 何辉, 张忠明, 姜勇刚, 冯军宗, 李良军, 冯坚. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(z2): 50-55.
[4] 田雷, 邱流潮. (超)疏水水泥基材料的研究进展[J]. 材料导报, 2021, 35(19): 19070-19080.
[5] 王梦宇, 李崇智, 牛振山. 渗透结晶型防护剂对混凝土防水抗蚀性能的影响[J]. 材料导报, 2020, 34(Z1): 185-188.
[6] 庄瑞杰, 于庆君, 唐晓龙, 易红宏, 黄永海, 张媛媛, 冯勇超. 介孔硅基分子筛吸附去除挥发性有机化合物的研究进展[J]. 材料导报, 2020, 34(15): 15013-15020.
[7] 闫秋会, 夏卫东, 罗杰任, 霍鑫. SiO2气凝胶的常压干燥制备与性能表征[J]. 材料导报, 2020, 34(12): 12173-12177.
[8] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[9] 杨理京,李争显,黄春良,王培,姚建华. 激光辅助冷喷涂制备高硬度材料涂层的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 412-417.
[10] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[11] 陈正涵,孙晓峰,李占明,史玉鹏. 镍铝青铜基冷喷涂Cu402F与Cu涂层的力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1618-1622.
[12] 何培龙, 程方杰, 齐书梅, 肖兵, 赵欢. 冷喷涂Zn粉后5083铝合金的中温钎焊研究*[J]. 《材料导报》期刊社, 2017, 31(4): 52-55.
[13] 郑晓辉, 宋皓, 张庆, 叶雄, 孟令东, 谭俊. 激光表面织构化对材料摩擦学性能影响的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 68-74.
[14] 王锋. 冷喷涂中颗粒形状和温度对其沉积过程的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 138-142.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed