Research Progress and Prospect of Tribological Properties of Cold Sprayed Copper-based Composite Coatings
CHEN Wenyuan1, TAN Hui1, CHENG Jun1, ZHU Shengyu1,2, YANG Jun1,2
1 State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China 2 College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: Copper-based composite coatings have been widely used in vital fields such as rail transportation, marine ships, metallurgy and chemical industry because of their good thermal and electrical conductivity, corrosion resistance and anti-wear property. The main coating deposition methods of powder metallurgy, thermal spraying and electroplating have the disadvantages of high preparation temperature, substrate thermal damage and high internal stress, which seriously limit the development and performance enhancement of the copper-based composite coatings. Cold spraying can solve the above problems and provide a new method for the preparation and application of the copper-based composite coating with good mechanical and tribological properties. However,at present, for the cold spraying, the hard particle reinforcement phase and inorganic lubrication phase are difficult to deposit and their interfaces with the matrix are weak. These shortages have adverse effects on the design and preparation of the cold sprayed copper-based composite coatings with good mechanical and tribological properties. Therefore, how to achieve design of the composition and structure, and preparation of cold sprayed copper-based composite coatings with the high density, low wear and corrosive resistance, become the focus and difficulty of the research on the tribological properties of cold sprayed copper-based composite coatings in the future. In the process of cold sprayed copper-based composite coating preparation and the studies of its tribological properties, the researchers realized the effective deposition of hard particles and inorganic solid lubricants by means of the metal coated powders and mechanical ball milling. In addition, heat treatment, laser remelting and friction stir welding play a positive role in improving the plasticity and the particle interface bonding of cold sprayed copper-based composite coatings, which is expected to achieve the synergistic optimization of microstructure, mechanical and tribological properties of the coatings. In this paper, the research status and development prospect of thetribological properties of cold sprayed copper-based composite coatings are reviewed. The development of cold spraying and the principle of the coating deposition are provided. The research progress of the tribological properties and the influence of post-treatment technology on the structure and properties of the coatings are summarized. It is expected to be useful for the design, preparation and application of cold sprayed copper-based composite coatings that related to friction and wear.
1 Liu Y N, Wang Y P, Zhu R F, et al. Materials for Mechanical Enginee-ring, 2021, 45(1), 1(in Chinese). 刘宇宁, 王云鹏, 祝儒飞, 等. 机械工程材料, 2021, 45(1), 1. 2 Lei Q, Yang Y H, Xiao Z, et al. Materials Reports, 2021, 35(15), 15153(in Chinese). 雷前, 杨一海, 肖柱, 等. 材料导报, 2021, 35(15), 15153. 3 Cui G J, Bi Q L, Zhu S Y, et al. Tribology International,2012,53,76. 4 Scharf T W, Prasad S V. Journal of Materials Science, 2013, 48, 511. 5 Chen Y Q, Yu M, Cao K, et al. Surface Technology, 2021, 50(2), 91(in Chinese). 陈雨晴, 余敏, 曹开, 等. 表面技术, 2021, 50(2), 91. 6 Champagne V, Helfritch D. International Materials Reviews, 2016, 61(7), 437. 7 Li W Y, Assadi H, Gaertner F, et al. Critical Reviews in Solid State and Materials Sciences, 2018, 44(2), 109. 8 Li W Y, Yang K, Yin S, et al. Journal of Materials Science & Techno-logy, 2018, 34(3), 440. 9 Liang X B, Zhou Z D, Zhang Z B, et al. Materials Reports, 2021, 35(1), 1003(in Chinese). 梁秀兵, 周志丹, 张志彬, 等. 材料导报, 2021, 35(1),1003. 10 Zhang Y Y, Descartes S, Vo P, et al. Journal of Thermal Spray Techno-logy, 2015, 25(3), 473. 11 Kang K, Park H, Kim C J, et al. Applied Surface Science, 2015, 356, 1039. 12 Winnicki M, Małachowska A, Baszczuk A, et al. Surface and Coatings Technology, 2017, 318, 90. 13 Koivuluoto H, Bolelli G, Milanti A, et al. Surface and Coatings Techno-logy, 2015, 268(25), 224. 14 Krebs S, Gärtner F, Klassen T. Journal of Thermal Spray Technology, 2014, 24(1-2), 126. 15 Moridi A, Hassani-Gangaraj S M, Guagliano M. Surface Engineering, 2014, 30(6) 369. 16 Tazegul O, Meydanoglu O, Kayali E S. Surface and Coatings Techno-logy, 2013, 236, 159. 17 Guo X P, Zhang G, Li W Y, et al. Applied Surface Science, 2007, 254(5), 1482. 18 Li C J. China Surface Engineering, 2009, 22(4), 5(in Chinese). 李长久. 中国表面工程, 2009, 22(4), 5. 19 Alkhimov A P, Kosarev V F, Papyrin A N. Soviet Physics Doklady, 1990, 35, 1047. 20 Viscusi A, Astarita A, Gatta R D, et al. Surface Engineering, 2018, 35(9) 743. 21 Assadi H, Kreye H, Gärtner F, et al. Acta Materialia, 2016, 116, 382. 22 Yin S, Cavaliere P, Aldwell B, et al. Additive Manufacturing, 2018, 21, 628. 23 Stoltenhoff T, Borchers C, Gärtner F, et al. Surface and Coatings Technology, 2006, 200, 4947. 24 Koivuluoto H, Coleman A, Murray K, et al. Journal of Thermal Spray Technology, 2012, 21(5), 1065. 25 Raoelison R N, Aubignat E, Planche M P, et al. Surface and Coatings Technology, 2016, 302, 47. 26 Olakanmi E O, Doyoyo M. Journal of Thermal Spray Technology, 2014, 23(5), 765. 27 Zhao G F, Wang Y Y, Zhang H L, et al. Surface Technology, 2017, 46(11), 198(in Chinese). 赵国峰, 王莹莹, 张海龙, 等. 表面技术,2017, 46(11), 198. 28 Assadi H, Gärtner F, Stoltenhoff T, et al. Acta Materialia, 2003, 51, 4379. 29 Grujicic M, Zhao C L, DeRosset W S, et al. Materials & Design, 2004, 25, 681. 30 Zhao Z P, Tang J R, Du H, et al. Materials Letters, 2018, 228, 246. 31 Ko K H, Choi J O, Lee H. Materials Letters, 2016, 175, 13. 32 Price T S, Shipway P H, McCartney D G, et al. Journal of Thermal Spray Technology, 2007,16(4), 566. 33 Cheng R, Luo X T, Huang G, et al. Journal of Materials Processing Technology, 2021, 296, 117231. 34 Lee C, Kim J. Journal of Thermal Spray Technology, 2015, 24(4), 592. 35 Luo X T, Li C J. Materials & Design, 2015, 83, 249. 36 Chen J, Song H, Liu G, et al. Journal of Thermal Spray Technology, 2020, 29, 1892. 37 He L, Hassani M. Journal of Thermal Spray Technology, 2020, 29, 1565. 38 Jiang Y L, Zhu H G. Materials Reports B:Research Papers, 2014, 28(1), 33(in Chinese). 蒋娅琳, 朱和国. 材料导报:研究篇, 2014, 28(1), 33. 39 Qin Y Q, Tian Y, Peng Y Q, et al. Journal of Alloys and Compounds, 2020, 848, 156475. 40 Chen W Y, Yu Y, Cheng J, et al. Journal of Thermal Spray Technology, 2018, 27(8), 1652. 41 Deng N, Tang J R, Xiong T Y, et al. Surface and Coatings Technology, 2019, 368, 8. 42 Tazegul O, Dylmishi V, Cimenoglu H. Archives of Civil and Mechanical Engineering, 2016, 16(3), 344. 43 Triantou K I, Pantelis D I, Guipont V, et al. Wear, 2015, 336-337, 96. 44 Zhang L Y, Yang S, Lyu X, et al. Journal of Thermal Spray Technology, 2019, 28(6), 1212. 45 Yin S, Xie Y C, Cizek J, et al. Composites Part B: Engineering, 2017, 113, 44. 46 Guo X P, Zhang G, Li W Y, et al. Applied Surface Science, 2009, 255(6), 3822. 47 Guo X P, Chen J, Yu H, et al. Surface and Coatings Technology, 2015, 268, 94. 48 Tang L F, Li W S, He L, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(5), 931(in Chinese). 唐丽芳, 李文生, 何玲, 等. 中国有色金属学报, 2019, 29(5), 931. 49 Huang C J, Xie Y C, Li W Y, et al. Surface and Coatings Technology, 2019, 371, 211. 50 Zhang Y Y, Shockley M J, Vo P, et al. Tribology Letters, 2016, 62(9), 1. 51 Zhang Y Y, Choudhuri D, Scharf T W, et al. Materials & Design, 2019, 182, 108009. 52 Zhang Y Y, Epshteyn Y, Chromik R R. Tribology International, 2018, 123, 296. 53 Chen W Y, Yu Y, Ma J Q, et al. Journal of Thermal Spray Technology, 2019, 28(7), 1688. 54 Ling H J, Mai Y J, Li S L, et al. Surface and Coatings Technology, 2019, 364, 256. 55 Wang Y, Zhu Y Q, Li R T, et al. Journal of Thermal Spray Technology, 2021, 30(6), 1482. 56 Yin S, Zhang Z, Ekoi E J, et al. Materials Letters, 2017, 196, 172. 57 Kim H J, Lee C H, Hwang S Y. Materials Science and Engineering: A, 2005, 391(1-2), 243. 58 Liu J, Zhou X, Zheng X, et al. Applied Surface Science, 2012, 258(19), 7490. 59 Liu J, Cui H, Zhou X, et al. Metals and Materials International, 2012, 18(1), 121. 60 Wang Z, Chen X, Gong Y, et al. Surface Engineering, 2017, 34(5), 392. 61 Dzhurinskiy D, Maeva E, Leshchinsky E, et al. Journal of Thermal Spray Technology, 2012, 21(2), 304. 62 Chen W Y, Yu Y, Tieu A K, et al. Tribology International, 2020, 142, 105992. 63 Chen W Y, Yu Y, Sui X D, et al. Surface and Coatings Technology, 2020, 403, 126359. 64 Kang N, Coddet P, Liao H L, et al. Surface and Coatings Technology, 2015, 280, 64. 65 Xiao Z T, Li X B, Wang J, et al. Materials Reports A:Review Papers, 2012, 26(2), 76(in Chinese). 肖正涛, 李相波, 王 佳, 等. 材料导报:综述篇, 2012, 26(2), 76. 66 Chen Z H, Sun X F, Li Z M, et al. Surface Technology, 2017, 46(10), 161(in Chinese). 陈正涵, 孙晓峰, 李占明, 等. 表面技术, 2017, 46(10), 161. 67 Li W Y, Wu D, Hu K W, et al. Surface and Coatings Technology, 2021, 409, 126887.