Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20070001-6    https://doi.org/10.11896/cldb.20070001
  高分子与聚合物基复合材料 |
面向低温环境的聚合物摩擦学性能及其改性研究进展
熊光耀1,2, 李圣鑫1, 李波1, 沈明学1,2
1 华东交通大学材料科学与工程学院,南昌 330013
2 华东交通大学轨道交通基础设施性能监测与保障国家重点实验室,南昌 330013
Research Progress of Polymer Tribological Properties and Modification in Low Temperature Environment
XIONG Guangyao1,2, LI Shengxin1, LI Bo1, SHEN Mingxue1,2
1 College of Materials Science & Engineering, East China Jiaotong University, Nanchang 330013, China
2 State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China
下载:  全 文 ( PDF ) ( 4151KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚合物及其复合材料具有力学性能好、摩擦系数低、耐磨性能强等优点,常被应用于制造摩擦副关键基础件,如密封圈、齿轮、轴承保持架、转子叶片、活塞等。但迄今针对低温工况的聚合物摩擦学研究甚少,主要工作集中在常温和高温工况。面向低温环境的聚合物及其复合材料的摩擦学应用与相关制备、改性工艺的相关理论并不完备,极端服役环境下聚合物的摩擦学损伤失效机理还尚未完全清楚。此外,聚合物材料虽然具有众多优良的性能,但是其表面硬度低、温度影响大、易变形等缺点也同样明显,限制了其在低温摩擦学领域的应用,为此,研究者通过填充填料、表面处理等方法对聚合物进行了改性研究,取得了一定的成果。
目前,由于航空航天等前沿技术的不断发展,聚合物在真空低温环境下的摩擦学性能受到了广泛关注,聚四氟乙烯、聚酰亚胺、聚醚醚酮等聚合物自润滑材料已被应用于空间飞行器领域来制作润滑和密封部件。研究者利用石墨、石墨烯、二硫化钼、芳纶纤维、玻璃纤维等对聚合物进行改性,制备了在低温环境下具有低摩擦系数、高耐磨性的聚醚醚酮/石墨、聚四氟乙烯/芳纶纤维、聚四氟乙烯/超高分子量聚乙烯等复合材料,促进了聚合物在低温摩擦学领域的应用。
本文系统分析了低温环境下温度、环境介质、滑动速度、载荷、滑动方向等因素对聚合物摩擦学性能的影响,对面向低温环境的聚合物摩擦学改性进行了简要总结,以期促进聚合物低温环境下摩擦学应用及其相关研究的进一步发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
熊光耀
李圣鑫
李波
沈明学
关键词:  聚合物  摩擦学性能  改性  摩擦磨损    
Abstract: Polymers and composite materials have the advantages of good mechanical properties, low friction coefficient, and strong wear resistance. They are often used in the manufacture of key basic components of friction pairs, such as sealing rings, gears, bearing cages, rotor blades, pistons, etc. So far there has been very little research on polymer tribology for low temperature conditions, and the main work has focused on normal temperature and high temperature conditions. The theory of tribology applications and related preparation and modification processes of polymers and composites for low temperature environments is not complete. The tribological damage failure mechanism of polymers in extreme service environments is not yet fully understood. In addition, although polymer materials have many excellent properties, their shortcomings such as low surface hardness, large temperature effect, and easy deformation are also obvious. These shortcomings limit their application in the field of low temperature tribology. In order to solve this problem, the researchers carried out modification research on the polymer through filling fillers, surface treatment and other methods and have achieved certain results.
At present, due to the continuous development of cutting-edge technologies such as aerospace, the tribological properties of polymers in va-cuum and low temperature environments have attracted widespread attention. Polymer self-lubricating materials such as polytetrafluoroethylene, polyimide, and polyether ether ketone have been used in spacecraft to make lubricating and sealing components. The researchersmodified the polymer with graphite, grapheme, molybdenum disulfide, aramid fiber, glass fiber, etc. And prepared PTFE/graphite, PTFE /Aramid fiber, PTFE/UHMWPE with low friction coefficient and high wear resistance under low temperature environment and other composite materials which have promoted the application of polymers in the field of low temperature tribology.
This review systematically analyzes the influence of temperature, environmental medium, sliding speed, load, sliding direction and other factors on polymer tribological properties under low temperature environment,and briefly summarizes the polymer tribological modification for low temperature environment. In order to promote the further development of tribology applications and related research in low temperature environment of polymers.
Key words:  polymer materials    tribological properties    modified    friction and wear
发布日期:  2022-02-10
ZTFLH:  TB324  
基金资助: 国家自然科学基金(51965019;52061012);江西省自然科学基金(20192BAB206026;20212ACB214003)
通讯作者:  shenmingxue@126.com   
作者简介:  熊光耀,教授,硕士研究生导师,江西机械工程学会铸造分会、摩擦学分会和表面工程分会理事。主要从事复合材料制备与性能表征、材料表面改性与防护、增材制造及强韧化技术等方面的研究。主持或参与国家自然科学基金、省部级课题10余项,发表学术论文50余篇,SCI、EI收录40余篇,授权或受理发明专利10余项。
沈明学,华东交通大学材料科学与工程学院教授,博士,博士研究生导师。2012年9月在西南交通大学机械设计及理论专业硕博连读取得博士学位,随后在上海交通大学机械工程专业从事博士后研究工作。江西省青年“千人计划”入选者、省青年“井冈学者奖励计划”入选者、省百千万人才工程入选者。现主要从事摩擦学及表面工程、大型装备关键零部件服役行为研究。主持国家自然科学基金面上/地区/青年基金和国铁集团重点研发课题等省部级以上项目20余项,参与国家973、国防973等课题多项。近年来,在国内外学术期刊上发表论文近100篇,其中包括Tribology International、Wear、Tribology Letters、Langmuir、《机械工程学报》《摩擦学学报》等SCI、EI收录60余篇。授权或受理国家发明专利20余项。
引用本文:    
熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
XIONG Guangyao, LI Shengxin, LI Bo, SHEN Mingxue. Research Progress of Polymer Tribological Properties and Modification in Low Temperature Environment. Materials Reports, 2022, 36(3): 20070001-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070001  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20070001
1 He C X. Materials Science and Technology,2003,11(4), 445(in Chinese).
何春霞. 材料科学与工艺, 2003,11(4), 445.
2 Sun R L, Sun S W, Guo L X,et al. Aerospace Materials and Technology,1999(1), 17(in Chinese).
孙荣禄,孙树文,郭立新,等. 宇航材料工艺,1999(1), 17.
3 Yin J J, Feng Z P, Liu L L, et al.Ship & Boat, 2017, 28(2), 10(in Chinese).
殷俊俊,冯正平,刘乐乐,等. 船舶, 2017, 28(2), 10.
4 Kuleba V I, Ostrovskaya Y L, Pustovalov V V.Tribology International, 2001, 34(4), 237.
5 Gradt T, Börner H, Schneider T.Tribology International, 2001, 34(4), 225.
6 Hübner W, Gradt T, Schneider T, et al.Wear, 1998, 216(2), 150.
7 Zhang C C,Li F. Information of Surface Engineering, 2009, 9(2), 7(in Chinese).
张长春,李峰. 表面工程资讯, 2009, 9(2), 7.
8 Song X Q, Liu X Q. Surface Engineering and Remanufacturing, 2018, 18(3), 56(in Chinese).
宋喜群,刘晓倩.表面工程与再制造,2018, 18(3), 56.
9 Liu Weimin. My country's first in-situ analysis system for spatial tribology was successfully developed. Instrument Information Network,2020.
刘维民.我国首台空间摩擦学原位分析系统研制成功,仪器信息网, 2020.
10 Yang K, Wang X, Wang J P, et al. Journal of Harbin Institute of Technology,2020, 52(1), 85(in Chinese).
杨琨,王霞,王进平,等.哈尔滨工业大学学报, 2020, 52(1), 85.
11 Ma L, He C G,Zhao X J, et al. Tribology, 2016, 36(1), 92(in Chinese).
马蕾,何成刚,赵相吉,等.摩擦学学报, 2016, 36(1), 92.
12 Fu S Y.Polymers at Cryogenic Temperatures,2013,16(5),296.
13 Wang Q H, Zheng F, Wang T M.Cryogenics,2016, 75, 19.
14 Song F, Yang Z, Zhao G, et al.Journal of Applied Polymer Science, 2017, 134(39), 45358.
15 Anita P, Piotr K.Tribologia,2018,2(8), 107.
16 Yamaguchi Y, Kennedy F E, Blanchet T A . Journal of Tribology, 1991, 113(2),414.
17 Gradt T, Schneider T, Hubner W, et al. International Journal of Hydrogen Energy, 1998,23(5), 397.
18 Liu H, Ji H, Wang X.Cryogenics, 2013, 58,1.
19 Xue C F, Yu M, Yao J L, et al. Journal of Shanghai Jiaotong University, 2018, 52(5), 604(in Chinese).
薛超凡,于敏,姚举禄,等.上海交通大学学报,2018, 52(5), 604.
20 Mccook N L, Burris D L, Dickrell P L, et al.Tribology Letters, 2005, 20(2), 109.
21 Babuska T F, Pitenis A A, Jones M R, et al.Tribology Letters, 2016, 63(2), 15.
22 Wan G, Wu Q, Yang K.Tribology International, 2020, 149, 105570.
23 Burton J C, Taborek P, Rutledge J E.Tribology Letters, 2006, 23(2), 131.
24 Stead I M N, Eckold D G, Clarke H, et al. Wear, 2019, s430,25.
25 Theiler G, Hubner W, Gradt T, et al. Tribology International, 2002,35,449.
26 Theiler G, Gradt T.Cryogenics, 2018, 93, 1.
27 Wang Q, Wang Y, Wang H, et al.Journal of Macromolecular Science, Part B, 2017, 56(7), 493.
28 Burris D L.Tribology Transactions, 2008, 51(1), 92.
29 Sheng C G, Lee J H, Narravula V, et al.Cold Regions Science and Technology,2012, 71, 95.
30 Oyamada T, Ono M, Miura H, et al.Tribology Transactions, 2013, 56(4), 607.
31 Zheng F, Lv M, Wang Q, et al. Polymers for Advanced Technologies, 2015, 26(8), 988.
32 Samyn P, Schoukens G.Polymer Composites, 2009, 30(11), 1631.
33 Theiler G, Gradt T.Wear, 2010, 269(3-4), 278.
34 Barry P R, Chiu P Y, Perry S S, et al.Tribology Letters, 2015, 58(50), 2.
35 Petrova N N, Portnyagina V V, Mukhin V V, et al.Materials Science Forum,2019, 945, 412.
36 Shi L W, Wang Z J, Sun X B, et al. Bearing, 2015(12), 31(in Chinese).
时连卫,王子君,孙小波,等. 轴承, 2015(12), 31.
37 Wang L, Jia X, Cui L, et al.Tribology Transactions, 2008, 52(1), 59.
38 Masami I, Haruho M, Tatsuya M, et al.Surface and Coatings Technology, 2011, 206(5), 999.
39 Lan P, Gheisari R, Meyer J L, et al.Wear, 2018, 398, 47.
[1] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[2] 汪叶舟, 曲绍宁, 尹训茜. 填充型聚合物基介电储能复合材料的研究进展[J]. 材料导报, 2022, 36(4): 20080076-7.
[3] 刘济民, 朱慧敏, 潘健, 宋力雅, 刘珊, 花亚冰, 石锐, 徐亮. 新型可生物降解的组织可黏附材料的合成与表征[J]. 材料导报, 2022, 36(3): 20120176-6.
[4] 刘鑫, 田轶轩, 黄金凤, 万城铭, 杨宏宇, 万朝均. 用于地聚合物的粉煤灰活性评价研究[J]. 材料导报, 2022, 36(2): 21010007-7.
[5] 董桂伟, 赵国群, 丁汪洋, 王桂龙, 张磊. 基于多阶压力控制的双峰泡孔聚合物发泡行为及性能[J]. 材料导报, 2022, 36(2): 20050168-5.
[6] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[7] 李世杰, 黄慧娟, 尚莉莉, 马建峰, 马千里, 刘杏娥. 活性炭净化室内甲醛的研究进展[J]. 材料导报, 2021, 35(z2): 75-80.
[8] 吴雪莲, 杨建, 屈阳, 王秀敏. 形状记忆聚合物智能材料在生物医学领域的应用[J]. 材料导报, 2021, 35(z2): 492-500.
[9] 雷颖, 葛冲冲, 冯瑾, 尚娇娇. pH响应型三维纳米纤维的构建及其性能研究[J]. 材料导报, 2021, 35(z2): 508-512.
[10] 詹宁宁, 张丽锋, 赵新星, 秦立娟, 滕厚开. 超支化聚合物的合成及应用[J]. 材料导报, 2021, 35(z2): 616-626.
[11] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[12] 马思阳, 张晓琳, 宫蕾, 詹世平, 侯维敏, 卢春兰. 基于AIE特性的有机小分子和聚合物的应用进展[J]. 材料导报, 2021, 35(Z1): 566-570.
[13] 张凯, 桂泰江, 吴连锋, 郭莉莎, 郭灵敏. 导热绝缘聚合物复合材料的研究进展[J]. 材料导报, 2021, 35(Z1): 571-575.
[14] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[15] 梁雷, 王彦玲, 刘斌, 李永飞, 汤龙皓. 含氟聚合物乳液的制备方法及在固液界面的应用[J]. 材料导报, 2021, 35(Z1): 586-593.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed