Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20060009-9    https://doi.org/10.11896/cldb.20060009
  高分子与聚合物基复合材料 |
聚氨酯基聚合物电解质的应用进展
侯璞, 张九州, 寻之玉, 霍鹏飞
东北林业大学材料科学与工程学院,哈尔滨 150040
Application Progress of Polyurethane-based Polymer Electrolytes
HOU Pu, ZHANG Jiuzhou, XUN Zhiyu, HUO Pengfei
College of Materials and Science Engineering, Northeast Forestry University, Harbin 150040, China
下载:  全 文 ( PDF ) ( 5652KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着人类社会经济和科学技术的迅猛发展,能源巨大消耗为人类生产生活带来了潜在的压力,解决能源的高效转化和储存问题迫在眉睫,新型能源转化和储存器件的研究及开发已成为当前的研究热点。以聚合物为基体材料的聚合物电解质赋予了电解质更高的强度和更优良的柔韧性,使二次电池和超级电容器在柔性可穿戴设备领域展现了巨大的应用潜力。
聚氨酯由不相容“软段-硬段”的两相结构构成,软段呈橡胶态,赋予材料一定的柔韧性,而由极性基团形成的分子硬段呈玻璃态,可以作为分子间的物理交联点。聚氨酯展现出从“刚性塑料”到“弹性橡胶”的广泛性能调控性,具有优良的分子可设计性,是聚合物电解质的重要基体材料之一。
聚氨酯可以通过分子设计、增塑改性、复合改性等手段提升聚合物电解质的综合性能。随着研究的不断深入,聚氨酯的分子结构设计和改性方法不断增多,因此,聚氨酯基聚合物电解质的综合性能也不断提升,从而使其能够广泛应用于锂离子电池、固态超级电容器等柔性储能器件之中。
本文根据聚氨酯基电解质的组成结构差异,综述了应用于电化学器件的聚氨酯基聚合物电解质的国内外研究进展,着重介绍了聚醚型聚氨酯基聚合物电解质、聚碳酸酯型聚氨酯基聚合物电解质、共聚改性(聚硅氧烷改性、丙烯酸酯改性)聚氨酯基聚合物电解质及复合改性聚氨酯基聚合物电解质,并展望了聚氨酯基聚合物电解质未来在电化学储能元件领域的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯璞
张九州
寻之玉
霍鹏飞
关键词:  聚氨酯  聚合物电解质  改性  锂离子电池  超级电容器    
Abstract: With the rapid development of economy and technology, huge energy consumption has brought potential pressure to the world. Efficient conversion and storage of energy is the key problem urgent to be solved. Novel energy conversion and storage devices, therefore, attract a lot of attention. The polymer electrolytes based on polymers as the matrix material exhibit high strength and flexibility, making secondary batteries and supercapacitors have great potential application in the field of flexible wearable devices.
Polyurethane is composed of a two-phase structure of incompatible soft segment-hard segment. The soft segment is in a rubbery state, which endows the material with good flexibility, while the hard segment formed by polar groups in a glass state can act as the physical cross-linking point. The polyurethane with excellent molecular designability exhibits a wide range of properties from rigid plastic to elastic rubber, so that it can be regarded as one of the important matrix materials of polymer electrolytes.
Polyurethane can enhance the comprehensive performance of polymer electrolyte by means of molecular design, plasticizing modification and composite modification. The molecular structure design and modification methods of polyurethane are emerging and gradually deepening, which improves the comprehensive properties of polyurethane-based polymer electrolytes. Therefore, the polyurethane has been widely investigated in flexible energy storage devices such as lithium-ion batteries and solid-state supercapacitors.
In this paper, the research progress of polyurethane-based polymer electrolytes applied in electrochemical devices is reviewed and classified according to the composition structures of polyurethane-based electrolytes. Polyether-type polyurethane electrolytes, polycarbonate-type polyurethane electrolytes, copolymerizing modified (polysiloxane modified and acrylate modified) polyurethane-based polymer electrolytes and composite modified polyurethane-based polymer electrolytes are introduced emphatically. Meanwhile, the development trend of polyurethane-based polymer electrolyte in the field of electrochemical energy storages is prospected.
Key words:  polyurethane    polymer electrolyte    modification    lithium ion battery    supercapacitor
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TQ323  
基金资助: 国家自然科学基金青年基金项目(51603032);中央高校基本科研业务费项目(2572017EB06;2572018BB01)
通讯作者:  huopengfei@nefu.edu.cn   
作者简介:  侯璞,现为东北林业大学材料科学与工程学院生物材料工程在读博士研究生,在霍鹏飞副教授的指导下进行研究。目前主要研究方向为聚氨酯基聚合物电解质在超级电容器上的应用。
霍鹏飞,东北林业大学材料科学与工程学院副教授,硕士研究生导师。2010年7月本科毕业于吉林大学化学学院,2015年6月获得吉林大学高分子化学与物理专业理学博士学位。主要从事聚合物电解质及储能元件的研究工作,发表论文10余篇,并获得授权专利2项。
引用本文:    
侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
HOU Pu, ZHANG Jiuzhou, XUN Zhiyu, HUO Pengfei. Application Progress of Polyurethane-based Polymer Electrolytes. Materials Reports, 2022, 36(5): 20060009-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060009  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20060009
1 Wu S, Zheng H, Tian R, et al. Journal of Power Sources, 2020, 472, 228627.
2 Jie J, Liu Y L, Cong L N, et al. Journal of Energy Chemistry, 2020, 49, 80.
3 Isikli S, Ryan K M. Current Opinion in Electrochemistry, 2020, 21, 188.
4 Commarieu B, Paolella A, Collin-Martin S, et al. Journal of Power Sources, 2019, 436, 226852.
5 Liu L H, Mo J S, Li J R, et al. Journal of Energy Chemistry, 2020, 48, 334.
6 Zhang D, Shen F L. Organic Electronics, 2020, 84, 105789.
7 Liu C, Wang J, Kou W, et al. Chemical Engineering Journal, 2021, 404, 126517.
8 Wang X, Hao X, Zhang H, et al. Electrochimica Acta, 2020, 329, 135108.
9 Chen G, Bai Y, Gao Y, et al. ACS Applied Materials & Interfaces, 2019, 11(46), 43252.
10 Wang X, Hao X, Xia Y, et al. Journal of Membrane Science, 2019, 582, 37.
11 Xia Y, Liang Y F, Xie D, et al. Chemical Engineering Journal, 2019, 358, 1047.
12 Yang S W, Du X S, Deng S, et al. Chemical Engineering Journal, 2020, 398, 125654.
13 Qi D J, Jiang Z N, Yu J, et al. Materials Reports A: Review Papers, 2016, 30(3), 144(in Chinese).
齐德江, 姜竹楠, 于佳, 等.材料导报:综述篇, 2016, 30(3), 144.
14 Ortiz-Serna P, Carsí M, Culebras M, et al. International Journal of Biological Macromolecules, 2020, 158, 1369.
15 Chen X L, Zhu J, Luo Y L,et al. Physical Chemistry Chemical Physics, 2020, 22(31), 17620.
16 Liu M, Zhong J, Li Z, et al. European Polymer Journal, 2020, 124, 109475.
17 Xing Y, Wu Y, Wang H, et al. Electrochemica Acta, 2014, 136, 513.
18 Liu X, Zhan Y, Zhao C, et al. Polymers, 2020, 12(7), 1513.
19 Marwah Rayung, Min Min Aung, Azizan Ahmad, et al. Materials Che-mistry and Physics, 2019, 222,110.
20 Xu S, Sun Z, Sun C, et al. Advanced Functional Materials, 2020,30(51),2007172.
21 Sato K. The Journal of Physical Chemistry B, 2018, 122(27), 7009.
22 Liu Y, Peng X, Cao Q, et al. The Journal of Physical Chemistry C, 2017, 121(35), 19140.
23 Jie J, Liu Y L, Cong L, et al. Journal of Energy Chemistry, 2020, 49, 80.
24 Shi J, Yang Y F, Shao H X, et al. Journal of Membrane Science, 2018, 547, 1.
25 Basak P, Manorama S V, Singh R K, et al. The Journal of Physical Chemistry B, 2005, 109(3), 1174.
26 Liang H L. Polyether Polyurethane-based ionic liquid solid electrolyte for DSSCs. Master's Thesis, Beijing University of Chemical Technology, China, 2017(in Chinese).
梁慧蕾. 聚醚型聚氨酯离子液体固态电解质的研究. 硕士学位论文, 北京化工大学, 2017.
27 Li X J, Gao J, Wang Y R, et al. Acta Optica Sinica, 2014, 34(3), 202(in Chinese).
栗晓杰, 高健, 王译然, 等.光学学报, 2014,34(3), 202.
28 Zhang C, Garrison T F, Madbouly S A, et al. Progress in Polymer Science, 2017, 71, 91.
29 Lei W, Jin D, Liu H P, et al. ChemSusChem, 2020, 13(15), 3731.
30 Ibrahim S, Ahmad A, Mohamed N. Polymers, 2015, 7(4), 747.
31 Mustapa S R, Aung M M, Ahmad A, et al. Electrochimica Acta, 2016, 222, 293.
32 Daud F N, Ahmad A, Badri K H. Advanced Materials Research, 2015, 1107, 163.
33 Song Y X, Bao J J. Fine Chemicals, 2018, 35(12), 2091(in Chinese).
宋有信, 鲍俊杰.精细化工, 2018, 35(12), 2091.
34 Bai Y, Pan C H, Wu F, et al. Chemical Journal of Chinese Universities, 2007, 28(9), 5(in Chinese).
白莹, 潘春花, 吴锋,等. 高等学校化学学报, 2007, 28(9), 5.
35 Ren N, Song Y, Tao C, et al. Journal of Solid State Electrochemistry, 2018, 22(4), 1109.
36 Cong B, Song Y, Ren N, et al. Materials & Design, 2018, 142, 221.
37 Liu L, Wu X, Li T. Journal of Power Sources, 2014, 249, 397.
38 Saito K, Jehanno C, Meabe L, et al. Journal of Materials Chemistry A, 2020, 8(28), 13921.
39 Bao J J. Solid polymer electrolyte based on polyurethane for all-solid-state lithium batteries. Ph.D. Thesis, University of Science and Technology of China, China, 2018(in Chinese).
鲍俊杰. 全固态锂电池用聚氨酯基固态聚合物电解质的制备与性能研究.博士学位论文,中国科学技术大学, 2018.
40 Bao J, Shi G, Tao C, et al. Journal of Power Sources, 2018, 389, 84.
41 Liu X C. Preparation and property investigation of the novel polycarbonate based polymer electrolyte. Master's Thesis, Qingdao University of Science and Technology, China, 2017(in Chinese).
刘晓晨. 新型聚碳酸酯聚合物电解质的合成及性能研究.硕士学位论文, 青岛科技大学, 2017.
42 Grewal M S, Tanaka M, Kawakami H. Electrochimica Acta, 2019, 307, 148.
43 Xie G S, Si W, Bao J J, et al. Chemical Propellants & Polymeric Mate-rials, 2017, 15(6), 44(in Chinese).
谢功山, 司维, 鲍俊杰, 等. 化学推进剂与高分子材料, 2017, 15(6), 44.
44 Li Y J, Chen S, Feng W. Asian Journal of Chemistry, 2014, 26(17), 5703.
45 Chen H, Wang S Y, Yu W J, et al. Chemical Propellants & Polymeric Materials, 2015,13(6), 76(in Chinese).
陈虎, 王世洋, 余文军,等. 化学推进剂与高分子材料, 2015, 13(6), 76.
46 Kozakiewicz J, Przybylski J, Sylwestrzak K. Polymers for Advanced Technologies, 2016, 27(2), 258.
47 Lee E J, Park K H, Lee Y H, et al. Journal of Applied Polymer Science, 2017, 134(26), 45009.
48 Lyu P, Yang J, Liu G, et al. Composites Part B: Engineering, 2017, 120, 35.
49 Naiwi T T, Aung M, Ahmad A, et al. Polymers, 2018, 10(10), 1142.
50 Ugur M H, Kılıç H, Berkem M, et al. Chemical Papers, 2014, 68(11), 1561.
51 Li L, Wang F, Li J, et al. International Journal of Hydrogen Energy, 2017, 42(17), 12087.
52 Hardy L C, Shriver D F. Journal of the American Chemical Society, 1985, 107(13), 3823.
53 Porcarelli L, Manojkumar K, Sardon H, et al. Electrochimica Acta, 2017, 241, 526.
54 Lin S C, Wang Y S. Journal of Power Sources, 2019, 413, 77.
55 Wu N, Shi Y R, Lang S Y, et al. Angewandte Chemie International Edition, 2019, 58(50), 18146.
56 Liu K, Liu M. Electrochimica Acta, 2016, 215, 261.
57 Tao C, Gao M H, Yin B H, et al. Electrochimica Acta, 2017, 257, 31.
58 Wang S, Min K. Polymer, 2010, 51(12), 2621.
59 Qin S, Wang Y, Wu X, et al. Polymers, 2020, 12(7), 1572.
60 Dong W, Wang Z, Zhang Q, et al. Journal of Power Sources, 2019, 419, 137.
61 Tang X, Qi C, Wang X, et al. RSC Advances, 2015, 5(72), 58655.
62 Chen Y N, Xiao Q. Acta Polymerica Sinica, 2020, 51(2), 183.
63 Xu J, Liu Y. Journal of Chemical Sciences, 2019, 131(6), 49.
64 Cai M, Zhu J, Yang C, et al. Polymers, 2019, 11(1), 185.
65 Kamisan A S, Kudin T I T, Ali A M M, et al. Electrochimica Acta, 2011, 57, 207.
66 Pan C Y, Gao J H, Zhang Q, et al. Journal of Central South University of Technology, 2008, 15(3), 295.
67 Zhang X, Xie J, Shi F, et al. Nano Letters, 2018, 18(6), 3829.
68 Shen X, Li R Y, Ma H S, et al. Solid State Ionics, 2020, 354, 115412.
69 Gao M H, Tao C, Bao J J, et al. Polymeric Materials Science and Engineering, 2018, 34(1), 148(in Chinese).
高明昊, 陶灿, 鲍俊杰, 等.高分子材料科学与工程, 2018, 34(1), 148.
70 Jiang G, Maeda S, Yang H, et al. Journal of Power Sources, 2005, 141(1), 143.
71 Wang Y, Sun M, Liu W, et al. Ionics, 2019, 25(8), 3695.
[1] 熊康, 杨啟梁, 胡溧. 低污染汽车聚氨酯泡沫设计与吸声性能研究[J]. 材料导报, 2022, 36(5): 20110059-5.
[2] 郭豪, 贾非, 陈琰霏, 塔力哈特·吾拉孜别克, 尹宗琦, 孙东磊. 应变速率对硬质聚氨酯准静态拉伸行为的影响[J]. 材料导报, 2022, 36(5): 20120184-4.
[3] 熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
[4] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[5] 李凯旋, 王焕磊. 生物多糖衍生的超级电容器用碳电极材料研究进展[J]. 材料导报, 2022, 36(1): 20080007-13.
[6] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[7] 李世杰, 黄慧娟, 尚莉莉, 马建峰, 马千里, 刘杏娥. 活性炭净化室内甲醛的研究进展[J]. 材料导报, 2021, 35(z2): 75-80.
[8] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[9] 胡国彬, 刘慧根, 覃爱苗. 纳米二氧化硅负极材料储锂性能的研究进展[J]. 材料导报, 2021, 35(Z1): 9-14.
[10] 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083-9096.
[11] 杨婷, 胡新宇, 王文磊. 硬脂酸锌热解ZnO@C复合材料的储锂性能[J]. 材料导报, 2021, 35(8): 8007-8010.
[12] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[13] 周志刚, 陈功鸿, 张红波, 凌永毅. 橡胶粉/SBS与高黏剂复合改性沥青的制备及性能研究[J]. 材料导报, 2021, 35(6): 6093-6099.
[14] 陈志林, 曹驰, 杨瑞成, 牟鑫斌, 陈碧碧, 胡秋晨. 奥氏体不锈钢渗氮&物理气相沉积复合改性层的组织及性能[J]. 材料导报, 2021, 35(6): 6161-6166.
[15] 龙泽清, 宋慧, 张光明. 卤氧化铋光催化剂改性及应用研究进展[J]. 材料导报, 2021, 35(5): 5067-5074.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed