Please wait a minute...
材料导报  2021, Vol. 35 Issue (8): 8007-8010    https://doi.org/10.11896/cldb.19120135
  无机非金属及其复合材料 |
硬脂酸锌热解ZnO@C复合材料的储锂性能
杨婷1,†, 胡新宇1,†, 王文磊2
1 中南林业科技大学材料科学与工程学院,长沙 410004
2 中南林业科技大学理学院,长沙 410004
Lithium Storage Properties of ZnO@C Composite Derived from Pyrolysis of Zinc Stearate
YANG Ting1,†, HU Xinyu1,†, WANG Wenlei2
1 School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
2 College of Science, Central South University of Forestry and Technology, Changsha 410004, China
下载:  全 文 ( PDF ) ( 4249KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 ZnO作为锂离子电池负极材料存在循环稳定性和倍率性能不理想的问题。为了提升ZnO的储锂性能,科研工作者尝试对其进行改性研究,包括结构优化和材料复合改性,但通常存在制备过程较复杂的问题。本实验采用简单的高温热解法,利用硬脂酸锌为前驱体,通过在惰性气氛中高温热解,直接制备了氧化锌@三维网状碳复合材料(ZnO@C)。随后,利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、拉曼光谱仪(Raman)、热重分析仪(TGA)等表征方法对该复合材料进行物性表征,并探讨其原位生长过程。作为锂离子电池负极材料,ZnO@C表现出较好的循环稳定性和倍率性能,当电流密度为100 mA/g时,60次循环后其仍具有369 mAh/g的可逆容量。ZnO@C较好的储锂性能主要归因于其独特的结构,穿插于ZnO颗粒中的三维网状碳不仅能增强材料的导电性,提升电极倍率性能,同时,ZnO颗粒与碳之间的空隙也可有效缓解ZnO在充放电过程中因体积膨胀/收缩而带来的电极材料粉化问题,改善电极循环稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨婷
胡新宇
王文磊
关键词:  氧化锌  三维网状碳  锂离子电池  负极材料    
Abstract: As anode electrode material of lithium-ion battery, ZnO has the problems of poor cycle stability and rate performance. In order to improve the lithium storage performance of ZnO, researchers try to modify it, including structural optimization and composite material modification, but there are usually complex problems in the preparation process. In this experiment, zinc oxide@three-dimensional reticulated carbon composite (ZnO@C) was prepared by a simple pyrolysis method using zinc stearate as the precursor and pyrolysis in inert atmosphere. Then, the physical properties of the composite were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), Raman spectrometer (Raman) and thermogravimetry (TGA), and the in-situ growth process was discussed. ZnO@C, as the anode material of lithium-ion battery, has good cycle stability and rate performance. When the current density is 100 mA/g, it still has a reversible capacity of 369 mAh/g after 60 cycles. The better lithium storage performance of ZnO@C is mainly attributed to its unique structure. The three-dimensional mesh carbon interpenetrated in ZnO particles not only enhances the conductivity of the material and improves the electrode rate performance, but also effectively alleviates the electrode material pulverization caused by volume expansion/contraction during the charging and discharging process of ZnO, and improves the electrode cycle stability.
Key words:  zinc oxide    three-dimensional reticulated carbon    lithium-ion battery    anode material
               出版日期:  2021-04-25      发布日期:  2021-05-10
ZTFLH:  O646  
基金资助: 湖南省教育厅科学研究项目(18C0247)
通讯作者:  yt-29@163.com   
作者简介:  杨婷,中南林业科技大学,讲师。2016年6月毕业于湖南大学,获得博士学位。主要从事新型储能材料和器件方面的研究,以第一作者身份发表SCI学术论文10余篇。
胡新宇,就读于中南林业科技大学。主要从事新型储能材料和器件方面的研究。
引用本文:    
杨婷, 胡新宇, 王文磊. 硬脂酸锌热解ZnO@C复合材料的储锂性能[J]. 材料导报, 2021, 35(8): 8007-8010.
YANG Ting, HU Xinyu, WANG Wenlei. Lithium Storage Properties of ZnO@C Composite Derived from Pyrolysis of Zinc Stearate. Materials Reports, 2021, 35(8): 8007-8010.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120135  或          http://www.mater-rep.com/CN/Y2021/V35/I8/8007
1 Arascon J M, Armand M. Nature,2001,414(6861),359.
2 Scrosati B, Garche J. Journal of Power Sources,2010,195(9),2419.
3 Park J, Ju J B, Choi W, et al. Journal of Alloys and Compounds,2019,773,960.
4 Cheng X B, Zhang R, Zhao C Z, et al. Chemical Reviews,2017,117(15),10403.
5 Jiang H R, Lu Z, Wu M C, et al. Nano Energy,2016,23,97.
6 Lu S, Wang H, Zhou J, et al. Nanoscale,2017,9(3),1184.
7 Yan Z L, Hu Q Y, Yan G C, et al. Chemical Engineering Journal,2017,321,495.
8 Jin C, Sheng O, Luo J, et al. Nano Energy,2017,37,177.
9 Joshi B N, An S, Jo H S, et al. ACS Applied Materials & Interfaces,2016,8(14),9446.
10 Xu W, Wang J, Ding F, et al. Energy & Environment Science,2014,7(2),513.
11 Lin D, Liu Y, Cui Y. Nature Nanotechnology,2017,12(3),194.
12 Aravindan V, Kumar P S, Sundaramurthy J, et al. Journal of Power Sources,2013,227,284.
13 Zhang L, Liu H W, Shi W, et al. Coordination Chemistry Reviews,2019,388,293.
14 Wang H K, Xie S M, Yao T H, et al. Journal of Materials Chemistry,2019,547,299.
15 Zhao K N, Sun C L, Yu Y H, et al. ACS Applied Materials & Interfaces,2019,10(51),44376.
16 Choi J H, Park G D, Jung D S, et al. Chemical Engineering Journal,2019,369,726.
17 Shao J X, Zhou H, Feng J H, et al. Journal of Alloys and Compounds,2019,784,869.
18 Park M G, Sung G K, Sung N E, et al. Journal of Power Sources,2016,328,607.
19 Fernando J F S, Zhang C, Firestein K L, et al. Journal of Materials Chemistry A,2019,7(14),8460.
20 Huang X H, Xia X H, Yuan Y F, et al. Electrochimica Acta,2011,56(14),4960.
21 Zhang G, Hou S, Zhang H, et al. Advanced Materials,2015,27(14),2400.
22 Quartarone E, Resmini A, Tealdi C, et al. Journal of Power Sources,2016,320,314.
23 Tu Z, Yang G, Song H, et al. ACS Applied Materials & Interfaces,2017,9(1),439.
24 Feng Y, Zhang Y, Song X, et al. Sustainable Energy & Fuels,2017,1(4),767.
25 Wu Z, Qin L, Pan Q. Journal of Alloys and Compounds,2011,509(37),9207.
26 Yang X, Xue H, Yang Q, et al. Chemical Engineering Journal,2017,308,340.
27 Wang H, Wu X, Qi X, et al. Materials Research Bulletin,2018,103,32.
28 Shen L, Wang C. RSC Advances,2015,5(108),88989.
[1] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[2] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[3] 玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
[4] 王鸣, 黄俊涛, 程丽丽, 周律法, 任亚航, 王学雷. 锂离子电池负极用Li4Ti5O12@C复合材料的制备及电化学性能[J]. 材料导报, 2020, 34(Z2): 19-23.
[5] 张曦元, 康建立. 柔性自支撑纳米结构电极的研究进展[J]. 材料导报, 2020, 34(Z2): 30-36.
[6] 王博闻, 方针, 付志瑶, 胡建平, 彭永晶. 不同SiO2含量对氧化锌电阻片通流性能的影响[J]. 材料导报, 2020, 34(Z2): 52-56.
[7] 潘福森, 沈龙, 童磊, 聂顺军, 李虹. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(Z1): 132-136.
[8] 梁康, 任玉荣, 唐有根, 孙旦, 贾树勇, 王海燕, 黄小兵. 钛酸锂用于钠离子电池负极的研究进展[J]. 材料导报, 2020, 34(9): 9041-9047.
[9] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[10] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[11] 浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
[12] 张伟业, 刘毅, 郭洪武. 木质基电化学储能器件的研究进展[J]. 材料导报, 2020, 34(23): 23001-23008.
[13] 袁梅梅, 徐汝辉, 姚耀春. 锂离子电池正极材料LiFePO4的表面碳包覆改性研究进展[J]. 材料导报, 2020, 34(19): 19061-19066.
[14] 程娅伊, 黄剑锋, 李嘉胤, 谢辉, 周影影. 二次可充放电电池用硒化锡负极材料的研究现状[J]. 材料导报, 2020, 34(17): 17139-17148.
[15] 李晶, 秦元斌, 宁晓辉. 改进高温固相法制备磷酸锰铁锂正极材料[J]. 材料导报, 2020, 34(16): 16001-16005.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed