Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9041-9047    https://doi.org/10.11896/cldb.19010208
  无机非金属及其复合材料 |
钛酸锂用于钠离子电池负极的研究进展
梁康1,2, 任玉荣1, 唐有根2, 孙旦2, 贾树勇3, 王海燕2, 黄小兵4
1 常州大学材料科学与工程学院,江苏省光伏科学与工程协同创新中心,常州 213164
2 中南大学化学化工学院,化学电源湖南省重点实验室,长沙 410083
3 光宝光电(常州)有限公司,常州 213100
4 湖南文理学院化学与材料工程学院,洞庭湖生态经济区建设与发展协同创新中心,水处理功能材料湖南省重点实验室,电镀废水回用技术湖南省工程研究中心,常德 415000
Research Progress on Lithium Titanate as Anode Material for Sodium-ion Batteries
LIANG Kang1,2, REN Yurong1, TANG Yougen2, SUN Dan2, JIA Shuyong3, WANG Haiyan2, HUANG Xiaobing4
1 Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
2 Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
3 Lite-On OPTO (CZ) Co., Ltd, Changzhou 213100, China
4 Hunan Province Cooperative Innovation Center for the Construction & Development of Dongting Lake Ecological Economic Zone, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
下载:  全 文 ( PDF ) ( 6296KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相比于锂离子电池,钠离子电池具有资源丰富、分布广泛和成本低廉等优点,在大规模储能领域有广阔的应用前景,近几年获得了学术界广泛的关注。在钠离子电池体系中,负极材料对整个电池的能量密度和循环性能有着重要的影响。而在众多的负极材料中,尖晶石型钛酸锂凭借其优异的循环性能以及相对较高的钠离子脱嵌电位,被认为是一种极具应用潜力的钠离子电池负极材料。然而,由于钛酸锂中钛的最外层轨道缺少电子,导致钛酸锂的导电性不佳。同时,由于钠离子半径较大,在脱嵌过程中离子扩散阻力大,易引起钛酸锂晶格畸变,严重制约着钛酸锂的倍率性能和循环性能。
针对上述问题,近年来研究者们基于深入的储钠机制研究,通过结构设计和界面优化,显著提升了钛酸锂在钠离子电池中的电化学性能。目前,文献报道的改善钛酸锂储钠性能的策略主要有:引入电导率较高的包覆层和离子掺杂来提高材料电子导电率,缓解嵌钠过程中的晶格畸变;通过结构调控设计纳米尺寸的钛酸锂材料以缩短离子扩散距离和增大其与电解液的接触面积。本文综述了近年来钛酸锂负极材料在钠离子电池中的研究现状,着重对钛酸锂的结构与性能、合成方法和改性研究等方面进行了深入的阐述,并对下一阶段钛酸锂作为钠离子电池负极的研究与应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁康
任玉荣
唐有根
孙旦
贾树勇
王海燕
黄小兵
关键词:  钠离子电池  负极材料  钛酸锂  合成方法  导电性    
Abstract: Sodium-ion batteries (SIBs) have good application prospects in the field of large-scale energy storage owing to the advantages of sodium abundant resources and low cost. In SIBs, anode materials show an important influence on the energy density and cycle performance of the batteries. Among these anode materials, spinel Li4Ti5O12(LTO) is considered as a promising candidate due to its excellent cycle performance and relatively high discharge potential. However, it exhibits poor electronic conductivity since the orbit of titanium in Li4Ti5O12 lacks electrons. Also, the ion diffusion resistance is large during the deintercalation process and thus the lattice distortion tends to happen due to the large radius of sodium ions. In recent years, the sodium storage mechanism of Li4Ti5O12 has been deeply studied. From the structural point of view, more breakthroughs have been made to significantly improve the electrochemical performance of Li4Ti5O12 in sodium-ion batteries.
How to realize the Li4Ti5O12 with a high rate performance to construct an advanced sodium-ion battery for large-scale energy storage is still a challenge. At present, the strategies to improve the sodium storage performance of Li4Ti5O12 include: (i) surface coating and ion doping to increase the ion diffusion rate and electron conductivity, and to alleviate the lattice distortion during sodium encapsulation; (ii) designing nano-sized Li4Ti5O12 materials to improve the properties of materials by shortening the ion diffusion distance and increasing the contact area with electrolyte. In this paper, the recent research progress of Li4Ti5O12 as anode material for sodium-ion batteries is reviewed, focusing on the structure and electrochemical properties of Li4Ti5O12, synthesis methods, modification research and so on. The future research and application of Li4Ti5O12 in the anode material of sodium-ion battery are prospected.
Key words:  sodium-ion battery    anode material    lithium titanate    synthetic methods    conductivity
                    发布日期:  2020-04-27
ZTFLH:  TQ131.11  
  TM912  
基金资助: 国家自然科学基金(U1607127; 91961126; 21576030)
通讯作者:  ryrchem@cczu.edu.cn   
作者简介:  梁康,2017年6月毕业于湖南文理学院,获得工学学士学位。现为常州大学材料科学与工程学院硕士研究生,导师为任玉荣教授。从2018年6月至今,在中南大学化学化工学院联合培养,合作指导老师为王海燕教授。目前主要研究课题为钛基储钠负极材料的研究。
任玉荣,常州大学材料科学与工程学院教授、博士研究生导师。1998年7月本科毕业于吉林师范大学,2010年7月在中国科学院成都有机化学研究所获得博士学位。2015年-2016年在加州大学洛杉矶分校做访问学者。主要研究方向包括新型炭材料和新型纳米能源材料与器件研究。发表学术论文30余篇,公开或授权专利15项。
引用本文:    
梁康, 任玉荣, 唐有根, 孙旦, 贾树勇, 王海燕, 黄小兵. 钛酸锂用于钠离子电池负极的研究进展[J]. 材料导报, 2020, 34(9): 9041-9047.
LIANG Kang, REN Yurong, TANG Yougen, SUN Dan, JIA Shuyong, WANG Haiyan, HUANG Xiaobing. Research Progress on Lithium Titanate as Anode Material for Sodium-ion Batteries. Materials Reports, 2020, 34(9): 9041-9047.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010208  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9041
1 Gao L, Wang L C, Dai S R, et al. Journal of Power Sources,2017,344,223.
2 Lee B G, Lee S H, Yoon J R, et al. Electrochimica Acta,2018,263,555.
3 Wang L P, Yu L H, Wang X, et al. Journal of Materials Chemistry A,2015,3(18),9353.
4 Scrosati B, Garche J. Journal of Power Sources,2010,195(9),2419.
5 Nithya C, Gopukumar S. Wiley Interdisciplinary Reviews: Energy and Environment,2015,4(3),253.
6 Hwang J Y, Myung S T, Sun Y K. Chemical Society Reviews,2017,46(12),3529.
7 Guo S H, Yi J, Sun Y, et al. Energy & Environmental Science,2016,9(10),2978.
8 Palomares V, Serras P, Villaluenga I, et al. Energy & Environmental Science,2012,5(3),5884.
9 He H N, Wang H Y, Tang Y G, et al. Progress in Chemistry,2014,26(4),572(in Chinese).
何菡娜,王海燕,唐有根,等.化学进展,2014,26(4),572.
10 Qu Y H, Zhang Z A, Du K, et al. Carbon,2016,105,103.
11 Ponrouch A, Goñi A R, Palacín M R. Electrochemistry Communications,2013,27,85.
12 Qie L, Chen W M, Xiong X Q, et al. Advanced Science,2015,2(12),1500195.
13 Jung S C, Kim H J, Kang Y J, et al. Journal of Alloys and Compounds,2016,688,158.
14 Liu Z M, Yu X Y, Lou X W, et al. Energy & Environmental Science,2016,9(7),2314.
15 He H N, Gan Q M, Wang H Y, et al. Nano Energy,2018,44,217.
16 Zhang Q, He H N, Huang X B, et al. Chemical Engineering Journal,2018,332,57.
17 Chin L C, Yi Y H, Chang W C, et al. Electrochimica Acta,2018,266,178.
18 Zhao L, Pan H L, Hu Y S, et al. Chinese Physics B,2012,21(2),028201.
19 Wu C J, Hua W B, Zhang Z, et al. Advanced Science,2018,5(9),1800519.
20 Wan F, Wu X L, Guo J Z, et al. Nano Energy,2015,13,450.
21 Wang C, Wang S, Tang L K, et al. Nano Energy,2016,21,133.
22 Tian Y, Wu Z L, Xu G B, et al. RSC Advances,2017,7(6),3293.
23 Zhu G N, Wang Y G, Xia Y Y. Energy & Environmental Science,2012,5(5),6652.
24 Zhu G N, Liu H J, Zhuang J H, et al. Energy & Environmental Science,2011,4(10),4016.
25 Zhao B, Ran R, Liu M L, et al. Materials Science and Engineering: R: Reports,2015,98,1.
26 Han C P, He Y B, Liu M, et al. Journal of Materials Chemistry A,2017,5(14),6368.
27 Yang L Y, Li H Z, Liu J, et al. Journal of Materials Chemistry A,2015,3(48),24446.
28 Yu X Q, Pan H L, Wan W, et al. Nano Letters,2013,13(10),4721.
29 Sun Y, Zhao L, Pan H L, et al. Nature Communications,2013,4,1870.
30 Chen Z J, Li H S, Wu L Y, et al. Chemical Record,2018,18(3),350.
31 Lai C, Wu Z Z, Zhu Y X, et al. Journal of Power Sources,2013,226,71.
32 Li X R, Hu H, Huang S, et al. Electrochimica Acta,2013,112,356.
33 Hong C H, Noviyanto A, Ryu J H, et al. Ceramics International,2012,38(1),301.
34 Liu Y, Liu J Y, Hou M Y, et al. Journal of Materials Chemistry A,2017,5(22),10902.
35 Yi T F, Yang S Y, Zhu Y R, et al. Ceramics International,2014,40(7),9853.
36 Sha Y J, Li L, Wei S Y, et al. Journal of Alloys and Compounds,2017,705,164.
37 Zhang W L, Li J F, Guan Y B, et al. Journal of Power Sources,2013,243,661.
38 Wang J S, Wang B F, Cao J, et al. Solid State Ionics,2014,268(Part A),131.
39 Leyet Y, Guerrero F, Anglada-Rivera J, et al. Materials Research Express,2017,4(4),045010.
40 Ghosh S, Mitra S, Barpanda P. Electrochimica Acta,2016,222,898.
41 Lee S S, Byun K T, Park J P, et al. Dalton Transactions,2007,37,4182.
42 Wang L, Zhang Y M, Scofield M E, et al. ChemSusChem,2015,8(19),3304.
43 Wang L, Zhang Y M, Guo H Y, et al. Chemistry of Materials,2018,30(3),671.
44 Bae S, Nam I, Park S, et al. Journal of Nanoscience and Nanotechnology,2017,17(1),588.
45 Chen J Z, Yang L, Fang S H, et al. Electrochimica Acta,2010,55(22),6596.
46 Liu J, Tang K, Song K P, et al. Physical Chemistry Chemical Physics,2013,15(48),20813-8.
47 Zhou Q, Liu L, Tan J L, et al. Journal of Power Sources,2015,283,243.
48 Yi T F, Xie Y, Jiang L J, et al. RSC Advances,2012,2(8),3541.
49 Huang X B, Chen H H, Zhou S B, et al. Applied Mechanics and Mate-rials,2014,633-634,495.
50 Kitta M, Kuratani K, Tabuchi M, et al. Electrochimica Acta,2014,148,175.
51 Zhang Q Y, Verde M G, Seo J K, et al. Journal of Power Sources,2015,280,355.
52 Yang S Y, Yuan J, Zhu Y R, et al. Ceramics International,2015,41(5),7073.
53 Li Z Y, Li J L, Zhao Y G, et al. RSC Advances,2016,6(19),15492.
54 Lin C F, Lai M O, Lu L, et al. Journal of Power Sources,2013,244,272.
55 Huang S H, Wen Z Y, Gu Z H, et al. Electrochimica Acta,2005,50(20),4057.
56 Han D D, Pan G L, Liu S, et al. RSC Advances,2015,5(112),92354.
57 Xu G B, Yang L W, Wei X L, et al. Advanced Functional Materials,2016,26(19),3349.
58 Wu Z L, Xu G B, Wei X L, et al. Electrochimica Acta,2016,207,275.
59 Ge Y Q, Jiang H, Fu K, et al. Journal of Power Sources,2014,272,860.
60 Yun B N, Du H L, Hwang J Y, et al. Journal of Materials Chemistry A,2017,5(6),2802.
61 Li J, Huang S, Xu S J, et al. Nanoscale Research Letters,2017,12(1),576.
62 Yoon J K, Nam S, Shim H C, et al. Materials,2018,11(5),803.
63 Li H Q, Zhou H S. Chemical Communications,2012,48(9),1201.
64 Wang J, Liu X M, Yang H, et al. Journal of Alloys and Compounds,2011,509(3),712.
65 Lee Y, Kim D W, Lee J K, et al. Journal of Nanoscience and Nanotech-nology,2015,15(9),7049.
66 Kim K T, Yu C Y, Yoon C S, et al. Nano Energy,2015,12,725.
67 Jung H G, Myung S T, Yoon C S, et al. Energy & Environmental Science,2011,4(4),1345.
68 Xu G B, Tian Y, Wei X L, et al. Journal of Power Sources,2017,337,180.
69 Cheng Q, Tang S, Liang J Y, et al. Results in Physics,2017,7,810.
70 Shi Y, Gao J, Abruña H D, et al. Nano Energy,2014,8,297.
71 Ren Y R, Huang X B, Wang H Y, et al. Ionics,2014,21(3),629.
72 Ren Y R, Lu P, Huang X B, et al. Solid State Ionics,2015,274,83.
73 Wang W, Guo Y Y, Liu L X, et al. Journal of Power Sources,2014,245,624.
[1] 王鑫, 仲崇贵, 李桦, 董正超. 超导薄膜FeSe和FeS0.5Se0.5的磁性与电子特性的研究[J]. 材料导报, 2020, 34(4): 4068-4072.
[2] 孟锦涛,周良毅,钟芸,沈越,黄云辉. 柔性钠离子电池研究进展[J]. 材料导报, 2020, 34(1): 1169-1176.
[3] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[4] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[5] 沙胜男, 史才军, 向顺成, 焦登武. 聚羧酸减水剂的合成技术研究进展[J]. 材料导报, 2019, 33(3): 558-568.
[6] 杨果, 马壮, 杨绍斌, 董伟, 沈丁. 低比表面积酚醛树脂硬碳的制备及电化学性能[J]. 材料导报, 2019, 33(22): 3820-3824.
[7] 程成, 肖方明, 王英, 唐仁衡, 裴和中. 基于石墨烯改性的Fe-Si@C/石墨烯复合负极材料[J]. 材料导报, 2019, 33(18): 3005-3011.
[8] 王英, 阮威, 唐仁衡, 肖方明, 孙泰, 黄玲. 不同粒径纳米硅制备Si@C/石墨负极材料及其电化学性能[J]. 材料导报, 2019, 33(18): 3021-3025.
[9] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[10] 杨绍斌, 单学颖, 李思南, 唐树伟, 沈丁, 孙闻. Na在XC3(X=B,N,P)掺杂石墨烯表面吸附与扩散行为的
第一性原理研究
[J]. 材料导报, 2019, 33(10): 1640-1645.
[11] 石玗, 高海铭, 李广, 李想. 铜-钢高频感应钎焊工艺及其对接头组织和导电性的影响[J]. 材料导报, 2018, 32(6): 909-914.
[12] 张利波, 王璐, 曲雯雯, 徐盛明, 张家麟. Al2O3基石油加氢脱硫催化剂研究现状与进展[J]. 《材料导报》期刊社, 2018, 32(5): 772-779.
[13] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
[14] 管庆顺,李建,宋如愿,徐朝阳,吴伟兵,景宜,戴红旗,房桂干. 基于纳米材料的气凝胶制备及应用[J]. 《材料导报》期刊社, 2018, 32(3): 384-390.
[15] 王莹, 李勇, 朱靖, 赵亚茹, 李焕. 石墨烯/CuO锂离子电池负极材料的研究进展[J]. 材料导报, 2018, 32(21): 3712-3719.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed