Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4068-4072    https://doi.org/10.11896/cldb.19010201
  金属与金属基复合材料 |
超导薄膜FeSe和FeS0.5Se0.5的磁性与电子特性的研究
王鑫, 仲崇贵, 李桦, 董正超
南通大学理学院, 南通 226019
Investigations on Magnetism and Electronic Properties of Superconducting Thin Films FeSe and FeS0.5Se0.5
WANG Xin, ZHONG Chonggui, LI Hua, DONG Zhengchao
School of Sciences, Nantong University, Nantong 226019, China
下载:  全 文 ( PDF ) ( 4252KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为磁性超导体系的重要组成部分,新型铁基超导薄膜FeSe已经成为凝聚态物理研究的热点。本工作基于密度泛函理论的第一性原理,研究了FeSe以及S原子替位掺杂FeS0.5Se0.5超导薄膜的磁性结构、磁矩、能带和电子特性。研究发现,FeSe和FeS0.5Se0.5的基态结构均为条形反铁磁性,且在布里渊区中心Γ点和边界M点的费米面上都分别出现了3个空穴型能带和2个电子型能带,两者的费米能级都主要由Fe-3d电子以及As-4p(S-3p)电子构成,并且费米面处的Fe-3d电子态密度几乎与总能态密度相等, 说明体系的超导电性主要来源于平面层内的Fe离子。然而,与纯的FeSe相比,FeS0.5Se0.5薄膜费米面上电子-空穴口袋的嵌套减弱,Fe离子磁矩减小,体系的反铁磁性减弱,表明S离子的掺杂有利于增强体系的超导电性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王鑫
仲崇贵
李桦
董正超
关键词:  超导电性  磁性结构  电子特性    
Abstract: As an important part of iron-based superconductors, FeSe superconducting materials have become a hot topic in the field of condensed matter physics. In this paper, the magnetic structure, energy band and electronic density of states of FeSe and S atoms substituted FeS0.5Se0.5 thin films are investigated using the first-principles calculations based on density function theory. Also the effects of S doping on the characteristics of FeSe superconducting film are analyzed in details. The research results show that the ground state of FeSe and FeS0.5Se0.5 are striped-type antiferromagnetic state. Their Fermi surfaces both contain three hole-type bands at the Brillouin zone center and two electron-type bands at the Brillouin zone corner. Furthermore, the Fermi energy of FeSe and FeS0.5Se0.5 films are mainly from a large number of Fe-3d electrons and a small amount of As-4p (S-3p) electrons, but also the density of states of Fe-3d states at Fermi level is almost equal to the total density of states, which further indicates that the superconductivity of system mainly originates from the Fe ions in the plane layer. Instead, compared with the pure FeSe, the FeS0.5Se0.5 film has undergone some changes that the nesting of electron-hole pockets on Fermi surface become weakened and the localized magnetic moment of Fe ions decrease, resulting in the increase of the metal properties and the reduction of the antiferromagnetism. Our research reflects that the doped S ions are beneficial to improve the superconductivity of FeSe system.
Key words:  superconductivity    magnetic structure    electronic properties
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  O469  
基金资助: 国家自然科学基金(11447229);江苏省自然科学基金(BK2012655);江苏省研究生科研与实践创新计划项目(KYCX18_2412)
通讯作者:  dzc@ntu.edu.cn   
作者简介:  王鑫,2017年6月毕业于南通大学,获得物理学学士学位。2017年9月至今在南通大学攻读硕士学位,主要从事超导材料方面的研究;仲崇贵,南通大学理学院教授,理学院副院长。他目前主要从事多铁性材料、能源材料的结构设计和性能分析方面的研究;.董正超,2003年博士毕业于南京大学凝聚态理论物理专业,南通大学教授,南通大学副校长。主要从事超导材料的研究,重点研究超导材料的性质及其应用。
引用本文:    
王鑫, 仲崇贵, 李桦, 董正超. 超导薄膜FeSe和FeS0.5Se0.5的磁性与电子特性的研究[J]. 材料导报, 2020, 34(4): 4068-4072.
WANG Xin, ZHONG Chonggui, LI Hua, DONG Zhengchao. Investigations on Magnetism and Electronic Properties of Superconducting Thin Films FeSe and FeS0.5Se0.5. Materials Reports, 2020, 34(4): 4068-4072.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010201  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4068
1 Kamihara Y, Watanabe T, Hirano M, et al. Journal of the American Chemical Society,2008, 130(11), 3296.
2 Liu X, Zhao L, He S L, et al. Journal of Physics: Condensed Matter, 2015, 27, 183201.
3 Zhao L, Liu G D, Zhou X J. Acta Physica Sinica, 2018, 67(20), 207413(in Chinese).
赵林,刘国东,周兴江. 物理学报, 2018, 67(20), 207413.
4 Wang X, Li H, Dong Z C, et al. Acta Physica Sinica, 2019, 68(2), 027401(in Chinese).
王鑫,李桦,董正超,等. 物理学报, 2019, 68(2), 027401.
5 He S L, He J F, Zhang W H, et al. Nature Materials, 2013, 12, 605.
6 Sun J P, Prashant S, Zhou H X, et al. Acta Physica Sinica, 2018, 67(20), 207404(in Chinese).
孙建平,Prashant S,周花雪,等. 物理学报, 2018, 67(20), 207404.
7 Li S C, Gan Y, Wang J H, et al. Acta Physica Sinica, 2015, 64(9), 097503(in Chinese).
李世超,甘远,王靖珲,等. 物理学报, 2015, 64(9), 097503.
8 Li Y, Yin Z P, Wang X C,et al. Physical Review Letters, 2016, 116, 247001.
9 Sun F, Guo Z N, Zhang H H, et al. Journal of Alloys and Compounds, 2017, 700, 43.
10 Mizuguchi Y, Tomioka F, Tsuda S, et al. Journal of the Physical Society of Japan, 2009, 78, 074712.
11 Yang Y, Feng S Q, Xiang Y Y, et al. Chinese Physics B, 2017, 26, 127401.
12 Dai P C. Reviews of Modern Physics, 2015, 87, 855.
13 Winiarski M J, Samsel-Czekala M, Ciechan A. Journal of Alloys and Compounds, 2013, 566, 187.
14 Medvedev S, McQueen T M, Troyan A I, et al. Nature Materials, 2009, 8, 630.
15 Ding C, Liu C, Zhong Q H, et al. Acta Physica Sinica, 2018, 67(20), 207415(in Chinese).
丁翠,刘充,张庆华,等. 物理学报, 2018, 67(20), 207415.
16 Fang Y, Tan S Y, Lai X C. Materials Review A:Review Papers, 2016, 30(9), 26(in Chinese).
方运, 谭世勇,赖新春. 材料导报:综述篇, 2016, 30(9), 26.
17 Liu K, Gao M, Lu Z Y, et al. Chinese Physics B, 2015, 24(11), 117402.
18 Liu K, Lu Z Y. Computational Materials Science, 2012, 55, 284.
19 Cao H Y, Tan S Y, Xiang H J, et al. Physical Review B, 2014, 89, 014501.
20 Subedi A, Zhang L J, Singh D J, et al. Physical Review B, 2008, 78, 134514.
21 Okabe H, Takeshita N, Horigane K, et al. Physical Review B, 2010, 81, 205119.
22 Tan X Y, Chen C L, Jin K X. Jorunal of Functional Materials, 2010, 41(5), 775(in Chinese).
谭兴毅,陈长乐,金克新. 功能材料,2010, 41(5), 775.
23 Wang Y L, Li C S, Zhang S N. Materials Review A:Review Papers, 2014, 28(3), 13(in Chinese).
王亚林,李成山,张胜楠. 材料导报:综述篇, 2014, 28(3), 13.
24 Chen Z J, Xu G B, Yan J G, et al. Journal of Applied Physics, 2016, 120, 235103.
25 Yin Z P, Haule K, Kotliar G. Nature Materials, 2011, 10, 932.
26 Xu G, Zhang S C, Lian B, et al. Physical Review Letters, 2016, 117(22), 047001.
27 Zhang P, Yaji K, Hashimoto T H, et al. Science, 2018, 1126, 4596.
28 Jin S F, Guo J G,Wang G, et al. Acta Physica Sinica, 2018, 67(20), 207412(in Chinese).
金士锋,郭建刚,王刚,等. 物理学报, 2018, 67(20), 207412.
29 Jasmine N M, Daniel P, Evan L T, et al. Solid State Communications, 2009, 149, 707.
30 Ding M C, Lin H Q, Zhang Y Z. Low Temperature Physics, 2014, 40 (2), 113.
[1] 郭景锋, 曹铁山, 程从前, 王富岗, 孟宪明, 赵杰. 氧化对Cr25Ni35Nb与Cr35Ni45Nb合金组织和磁性的影响[J]. 材料导报, 2019, 33(4): 650-653.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed