Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4073-4076    https://doi.org/10.11896/cldb.19030060
  金属与金属基复合材料 |
选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制
李卿1,2, 赵国瑞1, 马文有1, 余红雅2, 刘敏1
1 华南理工大学材料科学与工程学院,广州 510640;
2 广东省新材料研究所,现代材料表面工程技术国家工程实验室,广东省现代表面工程技术重点实验室,广州 510650
Mechanical Properties and Fracture Mechanism of Porous Ti6Al4V (ELI) Alloy Fabricated by Selective Laser Melting
LI Qing1,2, ZHAO Guorui1, MA Wenyou1, YU Hongya2, LIU Min1
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;
2 Key Laboratory of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials, Guangzhou 510650, China
下载:  全 文 ( PDF ) ( 3342KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究孔隙率、支杆直径等结构参数对多孔Ti6Al4V (Extra-low interstitial, ELI)合金拉伸性能的影响,本实验采用选区激光熔化的方法成形了正八面结构的多孔Ti6Al4V (ELI)合金,在室温下对不同结构参数的多孔Ti6Al4V (ELI)合金进行了拉伸试验,并利用扫描电镜观察合金的断口形貌以分析其拉伸断裂机制。结果表明:在相同孔隙率下,随着支杆直径的增大,多孔结构的抗拉强度和延伸率都明显升高;当支杆直径相近时,孔隙率的升高则会导致多孔结构的抗拉强度和延伸率下降;拉伸断口存在大量的解理台阶和少量的韧窝,表明正八面体多孔Ti6Al4V (ELI)合金的拉伸断裂机制为脆性和韧性断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李卿
赵国瑞
马文有
余红雅
刘敏
关键词:  增材制造  选区激光熔化  多孔结构  Ti6Al4V(ELI)合金  拉伸    
Abstract: In order to investigate the influence of structural parameters such as porosity and strut diameter on the tensile properties of porous Ti6Al4V (ELI) alloy, octahedral porous Ti6Al4V (ELI) alloy was precisely fabricated by selective laser melting. The tensile test of porous Ti6Al4V (ELI) alloy with different structural parameters was carried out at room temperature, the fracture morphology of the alloy was observed by scanning electron microscopy to reveal the failure mechanism in tension. Results show that tensile strength and elongation increase with the increase of strut thickness when the porosity is the same, while mechanical properties decrease with the increase of porosity when with similar strut thickness. The massive terraces and few dimples at the fracture surface indicate the brittle and ductile fracture mechanism of the SLM-ed Ti6Al4V (ELI) alloy.
Key words:  additive manufacturing    selective laser melting    porous structure    Ti6Al4V (ELI) alloy    tension
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  TG113.25  
  TG115.5  
基金资助: 广东省科学院实施创新驱动发展能力建设专项资金(2017GDASCX-0202;2017GDASCX-0111; 2018GDASCX-0402; 2018GDASCX-0946; 2018GDASCX-0111); 广东省省级科技计划项目(2016A030312015; 2017A070702016; 2017B030314122; 2017A070701027; 2014B070705007)
通讯作者:  liumin@gdas.gd.cn   
作者简介:  李卿,华南理工大学材料科学与工程学院材料工程专业硕士研究生,于2017年7月至2019年6月在广东省新材料所联合培养学习,主要从事金属增材制造领域的研究;刘敏,广东省科学院教授级高级工程师,博士研究生导师,曾任973项目首席科学家。长期从事增材制造、热喷涂等表面工程的研究和应用工作。先后主持973、863、军工配套以及省重大专项等30余项,获国家科技进步二等奖1项,省部级科技进步一等奖4项、二等奖5项。国务院政府特殊津贴专家,获广东省五一劳动奖章、新世纪百千万人才工程国家级人选。现担任中国材料研究学会常务理事、中国有色金属学会理事和中国机械工程学会表面工程专业委员会副主任等职务。
引用本文:    
李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
LI Qing, ZHAO Guorui, MA Wenyou, YU Hongya, LIU Min. Mechanical Properties and Fracture Mechanism of Porous Ti6Al4V (ELI) Alloy Fabricated by Selective Laser Melting. Materials Reports, 2020, 34(4): 4073-4076.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030060  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4073
1 Liu H, Yang G J, Yu Z T, et al. Titanium Industry Progress, 2010, 27(1), 9(in Chinese).
刘辉, 杨冠军, 于振涛, 等.钛工业进展, 2010, 27(1), 9.
2 Weiβmann V, Bader R, Hansmann H, et al. Materials & Design, 2016, 95(5), 188.
3 Heinl P, Muller L, Korner C, et al. Acta Biomaterialia, 2008, 4(5),1536.
4 Van Bael S, Chai Y C, Truscello S, et al. Acta Biomaterialia, 2012, 8(7), 2824.
5 Hu F X, He X M, Lv Y M, et al. Materials Review A:Review Papers, 2016, 30(7), 109(in Chinese).
颉芳霞, 何雪明, 吕彦明, 等.材料导报:综述篇, 2016, 30(7), 109.
6 Kadkhodapour J, Montazerian H, Darabi A, et al. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50, 180.
7 Wang M Y, Zhu H H, Qi T, et al. Laser Technology, 2016, 40(2), 219(in Chinese).
王梦瑶, 朱海红, 祁婷, 等.激光技术, 2016, 40(2), 219.
8 Wang J F, Yuan J T, Wang Z H, et al. Laser Technology, 2018, 47(6), 411(in Chinese).
王俊飞, 袁军堂, 汪振华, 等.激光技术, 2018, 47(6), 411.
9 Yavari S A, Wauthle R, van der Stok J, et al. Materials Science & Engineering C, Materials for Biological Applications, 2013, 33(8), 4849.
10 Li S J, Xu Q S, Wang Z, et al. Acta Biomaterialia, 2014, 10(10), 4537.
11 Li Q, Zhao G R, Yan X C, et al. Laser & Optoelectronics Progress, 2018, 56(1), 211(in Chinese).
李卿, 赵国瑞, 闫星辰, 等.激光与光电子学进展, 2018, 56(1), 211.
12 Weiβmann V, Wieding J, Hansmann H, et al. Metals, 2016, 6(7), 166.
13 Pyka G, Kerckhofs G, Papantoniou I, et al. Materials, 2013, 6(10), 4737.
14 Zhao Y Q, Chen Y N, Zhang X M, et al. Phase transformation and heat treatment of titanium alloys, Central South University Press, China, 2012(in Chinese).
赵永庆, 陈永楠, 张学敏, 等. 钛合金相变及热处理, 中南大学出版社, 2012.
15 Gorsse S, Hutchinson, Goune M, et al. Science and Technology of Advanced Materials, 2017, 18(1),84.
[1] 秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
[2] 丁华平,龚攀,姚可夫,邓磊,金俊松,王新云. 非晶合金零件成形技术研究进展[J]. 材料导报, 2020, 34(3): 3133-3141.
[3] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[4] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[5] 郭纯, 马明亮, 胡瑞章, 杨拓宇, 陈丰. 电弧增材制造舰船用高强钢10CrNi3MoV的组织及性能[J]. 材料导报, 2019, 33(Z2): 455-459.
[6] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[7] 白强来, 付佺, 潘成刚, 王林德, 慕朝阳. 高延伸率柔性耐烧蚀涂料拉伸性能分析[J]. 材料导报, 2019, 33(z1): 485-487.
[8] 申琦, 余森, 牛金龙, 汶斌斌, 刘辉, 于振涛. 选区激光熔化制备镁基材料研究进展[J]. 材料导报, 2019, 33(z1): 278-282.
[9] 常江. 苯并三唑衍生物杂化聚氨酯基复合材料的微观形貌及力学性能探究[J]. 材料导报, 2019, 33(6): 1074-1078.
[10] 马燕, 刘秀, 罗利, 罗文波, 张永军. 双轴拉伸下高聚物的时间-应力等效原理试验研究[J]. 材料导报, 2019, 33(24): 4188-4192.
[11] 叶寒, 张坚强, 黄俊强, 刘勇. 选区激光熔化WC/AlSi10Mg复合材料的微观组织和疲劳性能[J]. 材料导报, 2019, 33(22): 3789-3794.
[12] 杨晨光, 赵全, 张茂江, 邢哲, 吴国忠. 聚四氟乙烯微粉对超临界CO2发泡聚丙烯泡孔结构及性能的改善[J]. 材料导报, 2019, 33(21): 3547-3551.
[13] 岳瑞瑞, 王会才, 刘霞平, 杨继斌, 汪振文. 可拉伸超级电容器碳基复合电极材料的研究进展[J]. 材料导报, 2019, 33(21): 3580-3587.
[14] 方杰, 易幼平, 黄始全, 何海林, 郭万富. 预拉伸变形对2219铝合金环形件组织与力学性能的影响[J]. 材料导报, 2019, 33(18): 3062-3066.
[15] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed