Please wait a minute...
材料导报  2020, Vol. 34 Issue (4): 4093-4097    https://doi.org/10.11896/cldb.18120126
  金属与金属基复合材料 |
选区激光熔化线能量对Inconel718涂层组织结构及性能的影响
秦翔1, 杨军1,2, 邹德宁1,2, 谢燕翔3
1 西安建筑科技大学冶金工程学院,西安 710055;
2 西安建筑科技大学陕西省黄金与资源重点实验室,西安 710055;
3 西安文理学院陕西省表面工程与再制造重点实验室,西安 710065
Heat Input Effect of Selective Laser Melting on Microstructure and Performance of the Layer Deposited by Inconel718
QIN Xiang1, YANG Jun1,2, ZOU Dening1,2, XIE Yanxiang3
1 School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China;
2 Shaanxi Key Laboratory of Gold and Resources, Xi’an University of Architecture and Technology, Xi’an 710055, China;
3 Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, Xi’an University, Xi’an 710065, China
下载:  全 文 ( PDF ) ( 5623KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 采用选区激光熔化技术(Selective laser melting,SLM),在55Mn2钢表面成形Inconel718涂层。系统研究不同激光线能量密度(η)对涂层表面组织形貌、相对致密度、显微硬度及涂层基体间剪切结合强度的影响。结果表明:随着激光线能量密度的提高,涂层表面因液体球化现象产生的球形颗粒减少,内部析出的δ相逐渐细化、柱状晶均匀分布。涂层内部结构致密度和显微硬度随着激光线能量密度的提高而逐渐增加,当线能量密度为357.14 J/m时,致密度达到99.6%,显微硬度达到428.6HV0.2。由剪切断口形貌可知涂层与基体间为韧性断裂机制,涂层与基体间的抗剪切强度在实验参数范围内为基体的1.9~2.15倍。本研究对采用激光选区熔化技术修复和强化轧辊表面提供了实验及理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦翔
杨军
邹德宁
谢燕翔
关键词:  选区激光熔化  组织形貌  显微硬度  剪切强度    
Abstract: The Inconel718 coating was formed on 55Mn2 steel by selective laser melting (SLM). The effects of laser line energy density on the surface microstructure, relative density, microhardness of coating and shear strength between the coating and the substrate were systematically studied. The results showed that with the increase of laser line energy density, the number of spherical particles on the surface of the coating decreased due to nodulizing phenomenon. The internal precipitated δ phase refined gradually and the columnar crystal evenly distributed. The internal structure density and microhardness of the coating increased gradually with the increase of the laser line energy density. The density and the microhardness reached 99.6% and 428.6HV0.2 when the line energy density was 357.14 J/m. The fracture morphology of the coating and the matrix displayed a ductile fracture mode, and the shear strength in the experimental parameter range was 1.9 to 2.15 times of the matrix. The results provide an experimental and theoretical basis on repairing and strengthening the roll surface by selective laser melting.
Key words:  selective laser melting    microstructure    microhardness    shear strength
               出版日期:  2020-02-25      发布日期:  2020-01-15
ZTFLH:  TG115  
基金资助: 国家自然科学基金(51774226;U1460104)
通讯作者:  yj-yangjun@xauat.edu.cn   
作者简介:  秦翔,西安建筑科技大学硕士研究生,就读于冶金工程学院钢铁冶金专业。本科毕业于西安建筑科技大学冶金工程专业。主要从事表面改性技术方向研究,开展关于轧辊再制造及其表面强化的研究工作;杨军,西安建筑科技大学教授。2007年毕业于西安交通大学材料学院博士研究生学位。1995年至今于西安建筑科技大学冶金学院任教,主要从事连铸与炉外精炼与工艺、材料表面改性和先进钢结构材料方面的研究。主要参与国家自然基金3项,主持和参与省部级和厅局级基金共8项。发表论文100余篇,其中SCI 收录40余篇,EI检索20余篇,被引频次800余次。多次以委员、分会场主席、会议秘书长身份参加国内外会议。
引用本文:    
秦翔, 杨军, 邹德宁, 谢燕翔. 选区激光熔化线能量对Inconel718涂层组织结构及性能的影响[J]. 材料导报, 2020, 34(4): 4093-4097.
QIN Xiang, YANG Jun, ZOU Dening, XIE Yanxiang. Heat Input Effect of Selective Laser Melting on Microstructure and Performance of the Layer Deposited by Inconel718. Materials Reports, 2020, 34(4): 4093-4097.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120126  或          http://www.mater-rep.com/CN/Y2020/V34/I4/4093
1 Yap C Y, Chua C K, Dong Z L, et al. Applied Physics Reviews, 2015, 2(4), 041101.
2 Frazier W E. Journal of Materials Engineering and Performance, 2014, 23(6), 1917.
3 Zhang X J, Tang S Y, Zhao H Y, et al. Journal of Materials Enginee-ring, 2016, 44(2), 122(in Chinese).
张学军, 唐思熠, 肇恒跃, 等. 材料工程, 2016, 44(2), 122.
4 Abe F, Osakada K, Shiomi M, et al. Journal of Materials Processing Technology, 2001, 111(s1-3), 210.
5 Tian J, Huang Z H, Qi W J, et al. Materials Review, 2017, 31(S1), 90(in Chinese).
田杰, 黄正华, 戚文军, 等. 材料导报, 2017, 31(专辑29),90.
6 Liu Y C, Guo Q Y, Li C, et al. Acta Metallurgica Sinica, 2016, 52(10), 1259(in Chinese).
刘永长, 郭倩颖, 李冲, 等. 金属学报, 2016, 52(10),1259.
7 Wang Y. Effect of delta phase on hot deformation and recrystallization behavior of alloy GH4169. Ph.D. Thesis,Harbin Institute of Technology, China, 2008(in Chinese).
王岩. δ相对GH4169合金高温变形及再结晶行为的影响. 博士学位论文,哈尔滨工业大学,2008.
8 Tian S G, Li Z R, Zhao Z G, et al. Rare Metal Materials and Enginee-ring,2012(9), 1651(in Chinese).
田素贵,李振荣,赵中刚,等. 稀有金属材料与工程,2012(9), 1651.
9 Qi H. Journal of Materials Engineering, 2012(8),92(in Chinese).
齐欢. 材料工程, 2012(8), 92.
10 Yang Y Q, Wang D, Wu W H. Chinese Journal of Lasers, 2011(6), 54(in Chinese).
杨永强, 王迪, 吴伟辉. 中国激光, 2011(6), 54.
11 Gu D, Hagedorn Y C, Meiners W, et al. Acta Materialia, 2012, 60(9), 3849.
12 Kruth J P, Froyen L, Vaerenbergh J V, et al. Journal of Materials Processing Technology, 2004, 1-3, 616.
13 Zhu Y, Zou J, Chen X, et al. Wear, 2016, 350-351, 46.
14 Johannes S, Terock M, Glatzel U. Advanced Engineering Materials, 2015, 17(8), 1099.
15 Wang R Z, Zhang X C, Liu F, et al. Procedia Engineering, 2015, 130, 1088.
16 Zhang Y, Gu D D, Shen L D, et al. Electromachining & Mould, 2014(4), 38(in Chinese).
张颖, 顾冬冬, 沈理达, 等. 电加工与模具, 2014(4),38.
17 Wang Z M, Guan K, Gao M, et al. Journal of Alloys and Compounds, 2012, 513, 518.
18 Read N, Wang W, Essa K, et al. Materials & Design, 2014, 65, 417.
19 Lin Y C, Deng J, Jiang Y Q, et al. Materials Science and Engineering: A, 2014, 598, 251.
20 Chen C Y. Fatigue and fracture, Huazhong University of Science ( Technology Press, China, 2002(in Chinese).
陈传尧. 疲劳与断裂, 华中科技大学出版社, 2002.
21 Lu K, Liu X D, Hu Z Q. Chinese Journal of Materials Research, 1994, 8(5), 385(in Chinese).
卢柯, 刘学东, 胡壮麒. 材料研究学报, 1994, 8(5), 385.
[1] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[2] 张亚娟, 李亚楠, 宋晓艳, 王海滨, 侯超, 聂祚仁. 特殊粒径分布球形Ni粉的制备及SLM工艺性能研究[J]. 材料导报, 2020, 34(6): 6114-6119.
[3] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[4] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[5] 肖丰强, 王东坡, 胡文彬, 崔雷, 高志明, 周兰聚. 终轧温度对2205/Q235B双相不锈钢复合板组织和性能的影响[J]. 材料导报, 2020, 34(16): 16119-16124.
[6] 汤鹏君, 李旭强, 翟海民, 李文生. 不同基体超音速火焰喷涂Cr3C2-20NiCr涂层的性能[J]. 材料导报, 2020, 34(12): 12115-12121.
[7] 刘广, 周溯源, 杨海威, 陈鹏, 欧阳潇, 严明. 3D打印CoCrFeMnNi高熵合金的微观组织、室温及低温力学性能[J]. 材料导报, 2020, 34(11): 11076-11080.
[8] 郭宝超, 蒋恩, 陈亮. 压水堆驱动机构钩爪激光与GTAW钴基合金堆焊层组织分析及性能表征[J]. 材料导报, 2019, 33(z1): 416-419.
[9] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[10] 申琦, 余森, 牛金龙, 汶斌斌, 刘辉, 于振涛. 选区激光熔化制备镁基材料研究进展[J]. 材料导报, 2019, 33(z1): 278-282.
[11] 叶寒, 张坚强, 黄俊强, 刘勇. 选区激光熔化WC/AlSi10Mg复合材料的微观组织和疲劳性能[J]. 材料导报, 2019, 33(22): 3789-3794.
[12] 段伟, 赵哲, 吉红伟, 卢洋, 陈嘉星, 倪培燊, 邓欣, 刘建业, 戚文军, 牛留辉, 高文华. 粉体性能及选区激光熔化打印工艺对AlSi10Mg合金致密化行为的影响[J]. 材料导报, 2019, 33(10): 1685-1690.
[13] 王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 589-592.
[14] 张天刚, 孙荣禄, 张雪洋, 刘亚楠. Ti811表面激光熔覆原位合成TiC-TiB2复合Ti基涂层的微观组织分析[J]. 《材料导报》期刊社, 2018, 32(13): 2208-2213.
[15] 黄本生, 高钰枭, 陈鹏, 李杰, 李光文. 高频感应熔覆TiN/Co涂层组织及性能研究[J]. 《材料导报》期刊社, 2018, 32(13): 2272-2277.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed