Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1685-1690    https://doi.org/10.11896/cldb.18080034
  金属与金属基复合材料 |
粉体性能及选区激光熔化打印工艺对AlSi10Mg合金致密化行为的影响
段伟1, 赵哲1, 吉红伟1, 卢洋1, 陈嘉星1, 倪培燊1, 邓欣1, 刘建业2, 戚文军2, 牛留辉2, 高文华2
1 广东工业大学机电工程学院,广州 510006
2 广东汉邦激光科技有限公司,中山 528427
Effects of Powder Properties and Selective Laser Melting Processing on the Densification Behavior of AlSi10Mg Alloy
DUAN Wei1, ZHAO Zhe1, JI Hongwei1, LU Yang1, CHEN Jiaxing1, NI Peishen1, DENG Xin1, LIU Jianye2,
QI Wenjun2, NIU Liuhui2, GAO Wenhua2
1 School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006
2 Guangdong Hanbang 3D Technology Co., Ltd., Zhongshan 528427
下载:  全 文 ( PDF ) ( 13648KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究重点探索了AlSi10Mg合金的粉体性能以及选区激光熔化(SLM)打印工艺对AlSi10Mg合金粉体致密化行为的影响。通过对两种粒度组成不同的球形AlSi10Mg合金粉体在选区激光熔化(SLM)工艺过程中致密化行为的研究,发现AlSi10Mg粉体粒度组成对SLM打印过程中的致密化程度有关键性影响:粗粉含量较高,更有利于较高致密度的SLM打印件的制备。通过选取上述两种粉体中SLM打印性能较高的AlSi10Mg粉体,采用Box-Behnken响应曲面实验设计系统探索了SLM工艺参数对打印件致密度的影响规律,获得了SLM打印工艺参数与打印件相对密度的定量关系模型。研究发现,SLM打印参数中对AlSi10Mg合金相对密度的影响程度从大到小依次为:激光功率、扫描速度、扫描间距;当激光功率为375 W、扫描速度为2 000 mm/s、扫描间距为50 μm时,AlSi10Mg打印件的相对密度值可达到98.26%,抗拉强度可达487 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段伟
赵哲
吉红伟
卢洋
陈嘉星
倪培燊
邓欣
刘建业
戚文军
牛留辉
高文华
关键词:  增材制造  选区激光熔化  AlSi10Mg合金粉体  Box-Behnken设计  相对密度    
Abstract: This study is focused on the investigation of the effects of powder properties and selective laser melting (SLM) processing parameters on densification behavior of AlSi10Mg alloy. The densification behavior of the SLM processed samples made from two kinds of AlSi10Mg alloy powders with different particle size distributions was studied, the results show that particle size distribution of AlSi10Mg powder is critical to the densification behavior during SLM processing, and the higher content of coarser particles results in the higher density of SLM processed samples. By choosing the AlSi10Mg powders with better SLM processed density, the effect of SLM processing parameters on the density was investigated by using Box-Behnken response surface methodology. A quantitative relationship model between SLM processing parameters and the relative density of SLM processed samples was obtained. It is found that among the SLM processing parameters, laser power has the most significant influence on the relative density of SLM processed samples, followed by scanning speed, and hatch space. When the laser power is 375 W, scanning speed is 2 000 mm/s, and hatch space is 50 μm, the relative density and tensile strength of AlSi10Mg printed samples can reach 98.26% and 487 MPa, respectively.
Key words:  additive manufacture    selective laser melting    AlSi10Mg alloy powder    Box-Behnken design    relative density
                    发布日期:  2019-05-16
ZTFLH:  TG146.2+1  
基金资助: 广东省前沿与关键技术创新重大科技专项(2017B090911006)
通讯作者:  ruddy.david@qq.com   
作者简介:  段伟,广东工业大学硕士研究生,主要从事金属SLM增材制造技术研究,已经申请3项发明专利。邓欣,广东工业大学机电工程学院特聘教授,主要研究领域包括无铅焊料力学性能、金属基复合材料及粉末冶金材料力学性能、纳米硬质合金的制造及性能、非传统硬质合金刀具、硬质合金梯度材料制造及性能、硬质合金-金刚石复合材料以及特殊形状金刚石聚晶合成工艺及材料设计、金属基复合材料3D打印等。邓欣教授已经发表专业论文40余篇,他引次数超过800,申请美国专利8项,授权3项。
引用本文:    
段伟, 赵哲, 吉红伟, 卢洋, 陈嘉星, 倪培燊, 邓欣, 刘建业, 戚文军, 牛留辉, 高文华. 粉体性能及选区激光熔化打印工艺对AlSi10Mg合金致密化行为的影响[J]. 材料导报, 2019, 33(10): 1685-1690.
DUAN Wei, ZHAO Zhe, JI Hongwei, LU Yang, CHEN Jiaxing, NI Peishen, DENG Xin, LIU Jianye,
QI Wenjun, NIU Liuhui, GAO Wenhua. Effects of Powder Properties and Selective Laser Melting Processing on the Densification Behavior of AlSi10Mg Alloy. Materials Reports, 2019, 33(10): 1685-1690.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080034  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1685
1 Martin J H, Yahata B D, Hundley J M, et al.Nature, 2017, 549(7672),365.
2 Li W, Li S, Liu J, et al.Materials Science & Engineering A, 2016, 663,116.
3 Frazier W E.Journal of Materials Engineering & Performance, 2014, 23(6),1917.
4 Wang L, Wang S, Wu J.Optics Laser Technology, 2017, 96,88.
5 Prashanth K G, Scudino S, Eckert J.Acta Materialia, 2017, 126,25.
6 Trevisan F, Calignano F, Lorusso M, et al.Materials, 2017, 10(1),1.
7 Bai Y, Yang Y, Wang D, et al. Rare Metal Materials & Engineering, 2018,47(3),1007.
8 Qin Q, Chen G X.Advanced Materials Research, 2014, 834-836,872.
9 Montgomery D C. Design and analysis of experiments, Wiley, America,1976.
10 Wang X J,Wang X C,Yi X B, et al. Sandong Science,2016, 29(2),30 (in Chinese).
王小军, 王修春, 伊希斌,等.山东科学, 2016, 29(2),30.
11 Tian Y Z,Chen K F,Zhang H. China Pulp & Paper,2003, 22(12),33 (in Chinese).
田英姿, 陈克复, 张恒. 中国造纸, 2003, 22(12),33.
12 Yang D Y,Ma C L,Sun H W,et al. China Powder Science and Technology,2002, 8(5),27 (in Chinese).
杨道媛, 马成良, 孙宏魏,等. 中国粉体技术, 2002, 8(5),27.
13 Morgan R H, Papworth A J, Sutcliffe C, et al.Journal of Materials Science, 2002, 37(15),3093.
14 Zou Y T,Wei Z Y,Du J, et al. Applied Laser,2016,36(6),656(in Chinese).
邹亚桐, 魏正英, 杜军, 等.应用激光, 2016,36(6),656.
15 Liu B, Wildman R, Tuck C, et al.In:Solid Freeform Fabrication Proceedings.2011,pp.227.
[1] 申琦, 余森, 牛金龙, 汶斌斌, 刘辉, 于振涛. 选区激光熔化制备镁基材料研究进展[J]. 材料导报, 2019, 33(z1): 278-282.
[2] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[3] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[4] 余淑荣, 程能弟, 黄健康, 李楠, 樊丁. 旁路耦合微束等离子弧焊增材制造的热过程[J]. 材料导报, 2019, 33(1): 162-166.
[5] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[6] 桑健, 王波, 朱训明, 张洪涛, 王云峰, 金伟, 高丙路, 常青, 何鹏. T2铜箔热辅助超声波增材制造工艺[J]. 材料导报, 2018, 32(18): 3199-3207.
[7] 彭谦, 董世运, 闫世兴, 门平, 王斌. 激光熔化沉积成形缺陷及其控制方法综述[J]. 材料导报, 2018, 32(15): 2666-2671.
[8] 杨海欧,王健,王冲,魏雷,周颖惠,林鑫. 电弧增材制造TC4钛合金宏观晶粒演化规律[J]. 《材料导报》期刊社, 2018, 32(12): 2028-2031.
[9] 杨海欧,王健,周颖惠,王冲,林鑫. 电弧增材制造技术及其在TC4钛合金中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1884-1890.
[10] 王凯博, 吕耀辉, 刘玉欣, 孙哲, 徐滨士. 热输入对脉冲等离子弧增材制造Inconel 718合金组织与性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 100-104.
[11] 何博, 潘宇飞, 陆敏. 石墨烯基储能材料的增材制造研究进展[J]. 《材料导报》期刊社, 2017, 31(13): 126-130.
[12] 李吉帅,戚文军,李亚江,黎小辉,王沛,刘建业. 选区激光熔化工艺参数对Ti-6Al-4V成形质量的影响*[J]. 材料导报编辑部, 2017, 31(10): 62-69.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed