Please wait a minute...
材料导报  2018, Vol. 32 Issue (15): 2666-2671    https://doi.org/10.11896/j.issn.1005-023X.2018.15.019
  金属与金属基复合材料 |
激光熔化沉积成形缺陷及其控制方法综述
彭谦, 董世运, 闫世兴, 门平, 王斌
陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
An Overview of Defects in Laser Melting Deposition Forming Productsand the Corresponding Controlling Methods
PENG Qian, DONG Shiyun, YAN Shixing, MEN Ping, WANG Bin
National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
下载:  全 文 ( PDF ) ( 2116KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 激光增材制造技术作为一种新型的快速成形技术,在快速精准成形的同时,还能够满足个性需求,这种成形方式完全颠覆了传统减材制造的成形理念,因而很快成为最能代表当今信息化时代的一种制造技术。常见的激光增材制造技术主要有以送粉为特征的激光熔化沉积技术(Laser melting deposition,LMD)和以粉末铺床为特征的选区激光熔化技术(Selective laser melting,SLM)。激光熔化沉积技术是采用同步送粉的方式通过大功率激光将同种或不同种的粉末熔化,然后逐行逐层地进行扫描堆积成形。利用这种方法所制备的零件不仅形状复杂,而且各项力学性能均优于铸件。相对于选区激光熔化技术,激光熔化沉积技术具有三大优势:(1)成形尺寸不受限制,可进行大尺寸的零件制造;(2)可以实现不同成分和比例的梯度材料成形;(3)可以进行零件修复与再制造。
激光熔化沉积成形过程是一个涉及温度场、应力场等多物理场的耦合过程,由于材料急热、急冷的特点使得利用激光熔化沉积法制备的零件组织为非平衡态组织,过程复杂,不稳定性因素多,因此制件容易出现翘曲变形、熔合不良、尺寸精度不高、开裂等宏观缺陷,内部也容易产生气孔、夹杂、裂纹等微观缺陷,其中激光熔化沉积制备的零件中较大残余应力的存在使得裂纹对其性能的影响更为显著。
当前,研究者们主要通过工艺实验及数值模拟研究了产生缺陷的原因,在一定程度上找出了产生气孔、熔合不良、裂纹等缺陷的主要影响因素,并针对这些因素进行逐步分析,在控制粉末特性,调节激光功率、扫描速度、送粉速度、搭接率等工艺参数,引入基板预热,热处理等缺陷控制方法方面取得了一定的进展。同时还利用外界先进检测、传感技术对缺陷进行了实时监测及闭环控制,为激光熔化沉积成形缺陷的控制提供了良好的辅助手段,大大提高了激光熔化沉积成形零件的性能。
本文总结了近年来国内外有关激光熔化沉积成形缺陷及其控制方法的研究进展,按照缺陷的种类进行了分类归纳,分析了缺陷形成原因及影响因素,汇总了目前研究的缺陷控制方法,并探讨了当前存在的问题和未来发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭谦
董世运
闫世兴
门平
王斌
关键词:  增材制造  激光熔化沉积  气孔  熔合不良  裂纹  缺陷控制    
Abstract: As a new type of rapid prototyping technology, laser additive manufacturing can flexibly attain the requirements of different individuals while rapidly forming accurately. This forming strategy completely subverts the forming concept of traditional subtractive materials manufacturing, and has quickly become the most representative manufacturing technology in the information age. The common laser additive manufacturing techniques include laser melting deposition (LMD) identified by powder feeding, and selective laser melting (SLM) characterized by powder coating. In laser melting deposition process, the homogeneous or heteroge-neous powders were firstly melted by high-power laser in a synchronous feeding mode, and then the layer-by-layer scanning deposition was conducted. Through LMD we can manufacture workpieces with both exquisite shape and higher mechanical properties compared with casted ones. LMD technic has three superiorities to SLM: Ⅰ. unlimited forming size which enables the manufacturing of large-size parts; Ⅱ. the ability of forming materials with composition gradient; Ⅲ. adaptability to parts’ repair and remanufacturing.
The LMD process is a complicated multi-physical-field (temperature and stress) coupling process that involves several uncertainties, and the material’s acute heat and rapid cooling make the resultant microstructure a non-equilibrium state. So the LMD product is prone to display the macro-defects of warping deformation, poor fusion, size imprecision and cracking, also tends to have micro-defects such as internal pores, inclusions and micro-cracks. Furthermore, residual stress in the laser melting deposited products exaggerates the influence of micro-cracks.
In the past few years, researchers were dedicated to discover and analyze the causes of defects, e.g. pores, poor fusion and cracks, through technological experiments and numerical simulation. Some achievements have been made in controlling the powder characteristics, adjusting the processing parameters, such as laser power, scanning speed, feeding speed, lap rate, etc., and adopting preliminary substrate heating and posterior thermal treatment. Moreover, the use of advanced detection and sensing technics for real-time monitoring and closed-loop control of the defects provides assistant methods for defect control, and facilitate to greatly improve the performance of LMD parts.
This review delineates the worldwide research progress in recent years upon laser melting deposition forming defects and the corresponding control methods. According to the types of defects, we summarize the causes and influencing factors of defect formation, and introduce the current defect controlling methods. The paper ends with a brief discussion of the unresolved problems and the future prospect.
Key words:  additive manufacturing    laser melting deposition    pore    poor fusion    crack    defect control
               出版日期:  2018-08-10      发布日期:  2018-08-09
ZTFLH:  TG665  
基金资助: 国家重点研发计划项目(2016YFB1100205)
通讯作者:  董世运:通信作者,男,1973年生,博士,研究员,博士研究生导师,研究方向为激光加工与无损检测技术 E-mail:syd422@vip.sohu.com   
作者简介:  彭谦:男,1994年生,硕士研究生,研究方向为激光增材制造技术 E-mail:1312404826@qq.com
引用本文:    
彭谦, 董世运, 闫世兴, 门平, 王斌. 激光熔化沉积成形缺陷及其控制方法综述[J]. 材料导报, 2018, 32(15): 2666-2671.
PENG Qian, DONG Shiyun, YAN Shixing, MEN Ping, WANG Bin. An Overview of Defects in Laser Melting Deposition Forming Productsand the Corresponding Controlling Methods. Materials Reports, 2018, 32(15): 2666-2671.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.15.019  或          http://www.mater-rep.com/CN/Y2018/V32/I15/2666
1 Lu B H. Research progress of advanced manufacturing technology in Xi’an Jiaotong University[J].Engineering Sciences,2013,15(1):4(in Chinese).
卢秉恒.西安交通大学先进制造技术研究进展[J].中国工程科学,2013,15(1):4.
2 Marquis F D S. Development of laser-powder additive manufacturing for industry: historical perspective, current and future applications[M]∥Powder materials: Current research and industrial practices Ⅲ. New York: John Wiley & Sons, Inc.2014:211.
3 Breuninger J. Additive manufacturing: Challenges and advantages for the medical industry[J].Puerto Rico Health Sciences Journal,2000,19(1):57.
4 Zhang A, Dichen L I, Liang S, et al. Development of laser additive manufacturing of high-performance metal parts[J].Aeronautical Manufacturing Technology,2016,517(22):16.
5 黄卫东.激光立体成形[M].西安:西北工业大学出版社,2007:1.
6 Yao C H, Zhan Z L, Liu J X, et al. The research of development and application of rapid prototyping technology[J].Journal of Kunming University of Science and Technology(Natural Science Edition),2000,25(5):83(in Chinese).
姚长虹,詹肇麟,刘建雄.快速原型制造技术的发展与应用研究[J].昆明理工大学学报(自然科学版),2000,25(5):83.
7 He Q, Zhou C C, et al. Research on 3D laser rapid forming technology[J].Machine Tool & Hydraulics,2015,43(19):16(in Chinese).
贺强,周长春,等.3D激光快速成形技术研究[J].机床与液压,2015,43(19):16.
8 Buchbinder D, Meiners W, Pirch N, et al. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting[J].Journal of Laser Applications,2014,26(1):012004.
9 Kempen K, Vrancken B, Humbeeck J V, et al. Selective laser mel-ting of crack-free high density M2 high speed steel parts by baseplate preheating[J].Journal of Manufacturing Science & Engineering,2014,136(6):061026.
10 Liu Q C, Elambasseril J, Sun S J, et al. The effect of manufacturing defects on the fatigue behaviour of Ti-6Al-4V specimens fabricated using selective laser melting[J].Advanced Materials Research,2014,891:1519.
11 Huang W D, Lin X. Research progress in laser solid forming of high performance metallic component[J].Materials China,2010,29(6):12(in Chinese).
黄卫东,林鑫.激光立体成形高性能金属零件研究进展[J].中国材料进展,2010,29(6):12.
12 Shamsaei N, Yadollahi A, Bian L, et al. An overview of direct laser deposition for additive manufacturing; part Ⅱ:Mechanical behavior, process parameter optimization and control[J].Additive Manufactu-ring,2015,8:12.
13 Zhang Y, Shi L, Li G. Characterization on laser melting deposition of metallic components[J].Rare Metal Materials and Engineering,2011,40(3):27.
14 Zhang F Y. The laser rapid forming technology with low cost hydrogenation dehydrogenization titanium alloy powders[D].Xi’an: Northwestern Polytechnical University,2006(in Chinese).
张凤英.低成本氢化脱氢钛合金粉末的激光快速成形[D].西安:西北工业大学,2006.
15 Bram M, Buchkremer H P, Stöver D. Reproducibility study of NiTi parts made by metal injection molding[J].Journal of Materials Engineering & Performance,2012,21(12):2701.
16 Zhang F, Chen J, Tan H, et al. Research on forming mechanism of defects in laser rapid formed titanium alloy[J].Rare Metal Materials & Engineering,2007,36(2):211.
17 Zhong C L.Investigations on high deposition-rate laser metal deposition for additive manufacturing application based on inconel 718[D].Changchun: University of Chinese Academy of Sciences,2015(in Chinese).
仲崇亮.基于Inconel718的高沉积率激光金属沉积增材制造技术研究[D].长春:中国科学院大学,2015.
18 Zhong C, Biermann T, Gasser A, et al. Experimental study of effects of main process parameters on porosity, track geometry, deposition rate, and powder efficiency for high deposition rate, laser metal deposition[J].Journal of Laser Applications,2015,27(4):042003.
19 Campanelli S L, Angelastro A, Signorile C G, et al. Investigation on direct laser powder deposition of 18 Ni (300) marage steel using mathematical model and experimental characterisation[J].International Journal of Advanced Manufacturing Technology,2016,89(1):885.
20 徐滨士,董世运.激光再制造[M].北京:国防工业出版社,2016:1.
21 Everton S, Dickens P, Tuck C, et al. The use of laser ultrasound to detect defects in laser melted parts[C]∥TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings. San Diego,2017:105.
22 Song J, Chew Y, Bi G, et al. Numerical and experimental study of laser aided additive manufacturing for melt-pool profile and grain orientation analysis[J].Materials & Design,2018,137:286.
23 Majumdar J D, Pinkerton A, Liu Z, et al. Microstructure characterisation and process optimization of laser assisted rapid fabrication of 316L stainless steel[J].Applied Surface Science,2005,247(1-4):320.
24 Zhang F Y, Chen J, Tan H, et al. Research on forming mechanism of defects in laser rapid formed titanium alloy[J].Rare Metal Mate-rials and Engineering,2007,36(2):211(in Chinese).
张凤英,陈静,谭华,等.钛合金激光快速成形过程中缺陷形成机理研究[J].稀有金属材料与工程,2007,36(2):211.
25 Brückner F, Finaske T, Willner R, et al. Laser additive manufactu-ring with crack-sensitive materials[J].Laser Technik Journal,2015,12(2):28.
26 Gasser-Ing A, Dipl.-Ing G B, Kelbassa-Ing I, et al. Laser Additive Manufacturing[J].Laser Technik Journal,2010,7(2):58.
27 Shao Y C, Chen C J, Zhang M, et al. Research on crack issue of deloro 40Ni alloys prototype fabricated by laser additive manufacturing[J].Applied Laser,2016,36(4):397(in Chinese).
邵玉呈,陈长军,张敏,等.关于Deloro 40镍基合金粉末激光增材制造成型件裂纹问题研究[J].应用激光,2016,36(4):397.
28 Li Q G, Lin X, Wang X H, et al. Research progress on cracking mechanism and control of laser additive repaired nickel-based supe-ralloys with high content of Al+Ti[J].Applied Laser,2016,36(4):471(in Chinese).
李秋歌,林鑫,王杏华,等.高Al+Ti镍基高温合金激光增材修复液化裂纹形成机理及控制研究进展[J].应用激光,2016,36(4):471.
29 Song J L, Deng Q L, Ge Z J, et al. The cracking control technology of laser rapid forming nickel-based alloys[J].Journal of Shanghai Jiaotong University,2006,40(3):548(in Chinese).
宋建丽,邓琦林,葛志军,等.镍基合金激光快速成形裂纹控制技术[J].上海交通大学学报,2006,40(3):548.
30 Li M, Zhang S, Li H, et al. Effect of nano-CeO2, on cobalt-based alloy laser coatings[J].Journal of Materials Processing Technology,2008,202(1):107.
31 Lai Y B, Liu W J, Kong Y, et al. Influencing factors of residual stress of Ti-6.5Al-1Mo-1V-2Zr alloy by laser rapid forming process[J].Rare Metal Materials and Engineering,2013,42(7):1526(in Chinese).
来佑彬,刘伟军,孔源,等.激光快速成形TA15残余应力影响因素的研究[J].稀有金属材料与工程,2013,42(7):1526.
32 Wang J, Li L, Tao W. Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition[J].Optics & Laser Technology,2016,82:170.
33 Chen Y, Lu F, Zhang K, et al. Investigation of dendritic growth and liquation cracking in laser melting deposited Inconel 718 at different laser input angles[J].Materials & Design,2016,105:133.
34 Shim D S, Baek G Y, Lee E M. Effect of substrate preheating by induction heater on direct energy deposition of AISI M4 powder[J].Materials Science & Engineering A,2016,682:550.
35 Zhang K, Wang S, Liu W, et al. Effects of substrate preheating on the thin-wall part built by laser metal deposition shaping[J].Applied Surface Science,2014,317:839.
36 Cabeza M, Castro G, Merino P, et al. Laser surface melting: A sui-table technique to repair damaged surfaces made in 14 Ni (200 grade) maraging steel[J].Surface & Coatings Technology,2012,212(11):159.
37 Xie R D, Lu Z L, Yi Y M, et al. Overview of defect detection and control technology in laser metal forming[J].Foundry,2017,66(1):33(in Chinese).
解瑞东,鲁中良,弋英民,等.激光金属成形缺陷在线检测与控制技术综述[J].铸造,2017,66(1):33.
38 Yang L S, Liu J S, Liu J C, et al.Study on CCD·based detection system for online monitoring of melt Pool Width in laser cladding[J].Laser Technology,2011,35(3):315(in Chinese).
杨柳杉,刘金水,刘继常,等.基于CCD的激光熔覆熔池宽度的在线检测研究[J].激光技术,2011,35(3):315.
39 Yuan C, Jafari M A. Vision-based online process control in manufacturing applications[J].IEEE Transactions on Automation Science & Engineering,2008,5(1):140.
40 Xiang S.Width control of molten pool in laser powder deposition process based on camera[D].Shanghai: Shanghai Jiaotong University,2015(in Chinese).
向森.基于相机的激光粉末沉积工艺熔池宽度控制[D].上海:上海交通大学,2015.
41 Tang L, Landers R G. Layer-to-layer height control for laser metal deposition process[J].Journal of Manufacturing Science & Enginee-ring,2011,133(2):021009.
42 Roberts I A, Wang C J, Esterlein R, et al. A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing[J].International Journal of Machine Tools & Manufacture,2009,49(12):916.
43 Gan Y, Wang W, Cui Z, et al. Numerical and experimental study of the temperature field evolution of Mg alloy during high power diode laser surface melting[J].Optik-International Journal for Light and Electron Optics,2015,126(7-8):739.
44 Qin L Y, Wang W, Yang G, et al. Experimental study on ultraso-nic-assisted laser metal deposition of titanium alloy[J].Chinese Journal of Lasers,2013,40(1):76(in Chinese).
钦兰云,王维,杨光,等.超声辅助钛合金激光沉积成形试验研究[J].中国激光,2013,40(1):76.
45 Zhou J, Xu J, Huang S, et al. Effect of laser surface melting with alternating magnetic field on wear and corrosion resistance of magne-sium alloy[J].Surface & Coatings Technology,2016,309:212.
46 Tan C, Zhu H, Kuang T, et al. Laser cladding Al-based amorphous-nanocrystalline composite coatings on AZ80 magnesium alloy under water cooling condition[J].Journal of Alloys & Compounds,2017,690:108.
47 Zhang Y K. Defects inspection of steel ball based on optical fiber sensing technique[D].Jinan:Ji Nan University,2011(in Chinese).
张永奎.基于光纤传感技术的钢球表面缺陷检测研究[D].济南:济南大学,2011.
[1] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[2] 侯艳, 程从前, 赵杰, 冯雪, 李然, 闵小华. 拉应力对2205双相不锈钢临界点蚀温度和点蚀行为的影响[J]. 材料导报, 2019, 33(6): 1022-1026.
[3] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[4] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[5] 肖来荣, 朴晟铭, 赵小军, 蔡圳阳, 韦道明. 热扩散法处理的M35螺丝冲头裂纹生成机制及工艺改良[J]. 材料导报, 2019, 33(16): 2710-2714.
[6] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[7] 段伟, 赵哲, 吉红伟, 卢洋, 陈嘉星, 倪培燊, 邓欣, 刘建业, 戚文军, 牛留辉, 高文华. 粉体性能及选区激光熔化打印工艺对AlSi10Mg合金致密化行为的影响[J]. 材料导报, 2019, 33(10): 1685-1690.
[8] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[9] 余淑荣, 程能弟, 黄健康, 李楠, 樊丁. 旁路耦合微束等离子弧焊增材制造的热过程[J]. 材料导报, 2019, 33(1): 162-166.
[10] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[11] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[12] 武焕春, 薛飞, 李成涛, 方可伟, 杨滨, 宋西平. 核电主管道不锈钢在高温高压水环境下的疲劳裂纹萌生行为[J]. 《材料导报》期刊社, 2018, 32(3): 373-377.
[13] 赵伦, 何晓聪, 张先炼, 丁燕芳, 刘洋, 邓聪. TA1钛合金自冲铆接头力学性能及微动行为[J]. 材料导报, 2018, 32(20): 3579-3583.
[14] 乔建毅,王文权,阮野,郭成伟. 环境温湿度对铝合金焊缝气孔和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 254-258.
[15] 桑健, 王波, 朱训明, 张洪涛, 王云峰, 金伟, 高丙路, 常青, 何鹏. T2铜箔热辅助超声波增材制造工艺[J]. 材料导报, 2018, 32(18): 3199-3207.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed