Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1500-1504    https://doi.org/10.11896/cldb.18030286
  无机非金属及其复合材料 |
基于内聚力模型的热障涂层失效行为研究
李雪换1,2, 底月兰2, 王海斗2, 李国禄1, 董丽虹2, 马懿泽2
1 河北工业大学材料科学与工程学院,天津 300130
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
An Overview on Failure Behavior Study of Thermal Barrier Coatings Based on Cohesive Zone Model
LI Xuehuan1,2, DI Yuelan2, WANG Haidou2, LI Guolu1, DONG Lihong2, MA Yize2
1 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130
2 National Key Laboratory for Remanufacturing, Academy of Army Armored Forces, Beijing 100072
下载:  全 文 ( PDF ) ( 1775KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热障涂层以其优异的隔热、耐磨和耐蚀性而被广泛应用于航空涡轮发动机中,其能够提高发动机的热效率和延长涡轮叶片的使用寿命。热障涂层的失效往往是裂纹扩展导致,其主要失效形式为表面开裂和界面分层失效。针对热障涂层的裂纹扩展行为,最重要也最直接的研究方法就是对热障涂层的整个损伤失效过程进行数值模拟,以便深入了解涂层失效过程及失效机理。
内聚力模型能够比较精确地描述界面开裂问题,在一定程度上可减轻甚至消除裂纹尖端的应力奇异性,可以模拟任意裂纹扩展,故而在裂纹扩展研究中得到了广泛应用。采用内聚力模型模拟热障涂层表面开裂和界面分层失效的过程中,通常把内聚力单元预埋在可能出现裂纹的实体单元之间,当材料发生破坏时,裂纹就会沿着内聚力单元排布的方向形成和扩展。然而造成热障涂层损伤失效的因素较多,失效机理复杂,以及内聚力模型本身的缺陷性,使得利用内聚力模型模拟热障涂层失效过程的研究还不够全面。
目前已经通过内聚力模型实现了热障涂层的损伤失效过程模拟,包括表面开裂过程和界面分层失效过程。当前研究大多忽略了涂层内部的微细观缺陷而将热障涂层视为均质材料进行研究,并且内聚力模型本身还存在一些问题,如参数的确定等。随着热障涂层的发展以及对内聚力模型认识的不断加深,内聚力模型模拟热障涂层损伤失效过程也在不断发展与完善。在表面开裂模拟方面,通过在陶瓷涂层内垂直嵌入内聚力单元来模拟陶瓷层内表面裂纹的扩展行为。陶瓷涂层内裂纹扩展行为的模拟大多采用扩展有限元法,内聚力模型的应用相对较少,而内聚力模型可有效解决界面开裂问题,特别是粘结层/陶瓷界面开裂问题,故而被广泛应用于热障涂层界面失效问题的研究中。
本文对内聚力模型进行了简要介绍,总结了内聚力模型在模拟热障涂层损伤失效过程方面的研究进展,指出了当前研究中存在的问题并对其下一步的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雪换
底月兰
王海斗
李国禄
董丽虹
马懿泽
关键词:  热障涂层  内聚力模型  失效行为  裂纹扩展  表面开裂  界面分层    
Abstract: Thermal barrier coatings (TBCs) hold widespread applications in gas turbines and aero engines because of their excellent thermal insulation, wear and corrosion resistance, which can improve engine thermal efficiency and prolong the service life of turbine blades. Generally, the failure of thermal barrier coatings is caused by the crack propagation, and the major failure modes consist of surface cracking and interface dela-mination. Concerning the crack propagation behavior of coatings, the most important and direct research approaches is to numerically simulate the entire failure process of the thermal barrier coatings, so as to acquire deep understanding of the mechanism of coating failure.
The cohesive zone model (CZM) is capable of describing the interface cracking problem accurately, reducing or even relieving the stress singularity at the crack tip, and simulating the propagation of any crack without defining the pre-crack. When CZM is employed to simulate the process of surface cracking and interfacial delamination of the thermal barrier coatings, the cohesive unit is usually embedded between solid elements where cracks may occur. Once the material is destroyed, the cracks will form and expand along the direction of the cohesive unit. Nevertheless, the damage failure of TBCs are affected by diverse factors accompanied by complex failure mechanism. The variety of failure modes and the insufficiency of the CZM itself make CZM fail to describe the whole picture in study of thermal barrier coatings failure.
At present, the simulation of damage failure process of TBCs has been realized by CZM, including the surface cracking process and the interface layer failure process. However, the majority of current studies regard the TBCs as homogenous materials and neglect the micro-defects inside the coating. Moreover, there is still some problems in CZM itself, such as the determination of parameters. With the advance of the TBCs and CZM, and the deepening of understanding to CZM, the simulation of failure process of TBCs by the CZM has been developed and improved continuously. Regarding to the simulation of surface cracking, the CZM is embedded vertically in the ceramic coating to simulate the expansion beha-vior of the internal surface cracks in the ceramic layer. Concerning the simulation of the crack growth behavior inside the ceramic coatings, the extended finite element method is commonly adopted, while CZM is seldom used. The CZM can effectively solve the problem of interface cracking, especially the bonding layer/ceramic interface cracking problem, it is widely employed in the study of interface failure problem of TBCs.
In this article, we give a brief introduction of the CZM, summarize the progress of CZM in simulating the failure behavior of the TBCs, and finally point out problems in the current research and the future development direction.
Key words:  thermal barrier coatings    cohesive zone model    failure behavior    crack propagation    surface cracking    interface delaminating
                    发布日期:  2019-05-08
ZTFLH:  TG115.28  
基金资助: 国家自然科学基金(51775553;51535011);973计划(61328304)
通讯作者:  wanghaidou@aliyun.com   
作者简介:  李雪换,现为河北工业大学材料科学与工程学院2016级硕士研究生,是河北工业大学和陆军装甲兵学院装备再制造技术国防科技重点实验室联合培养研究生。在李国禄教授和王海斗研究员的指导下进行研究,目前主要研究方向为再制造表面工程。王海斗,2003年博士毕业于清华大学机械工程系,陆军装甲兵学院装备再制造技术国防科技重点实验室的教授和常务副主任。目前的研究领域包括表面工程、再制造和摩擦学,其中主要侧重于表面涂层和固体薄膜润滑的使用寿命评估。
引用本文:    
李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
LI Xuehuan, DI Yuelan, WANG Haidou, LI Guolu, DONG Lihong, MA Yize. An Overview on Failure Behavior Study of Thermal Barrier Coatings Based on Cohesive Zone Model. Materials Reports, 2019, 33(9): 1500-1504.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030286  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1500
1 Padture N P, Gell M, Jordan E H. Science,2002,296(5566),280.
2 Marino K A, Hinnemann B, Carter E A. Proceedings of the National Academy of Sciences of the United States of America,2011,108(14),5480.
3 Bäker M, Seiler P. Journal of Thermal Spray Technology,2017,26(6),1146.
4 Yang L, Zhou Y C, Lu C. Acta Materialia,2011,59(17),6519.
5 Wang L, Ni J X, Shao F, et al. Journal of Thermal Spray Technology,2017,26(1-2),116.
6 Yang Li. Nondestructive evaluation of oxidation, damage and fracture of thermal barrier coatings. Ph.D. Thesis, Xiangtan University, China,2007(in Chinese).
杨丽.热障涂层氧化、损伤与断裂的无损评价研究.博士学位论文,湘潭大学,2007.
7 Zhou Y C,Liu Q X,Yang L,et al. Acta Mechanica Solida Sinica,2010,31(5),504(in Chinese).
周益春,刘奇星,杨丽,等.固体力学学报,2010,31(5),504.
8 Jin G H, Damage and failure analysis of heterogeneous materials based on cohesive zone model. Master’s Thesis, Zhejiang University of Technology,China,2015(in Chinese).
靳国辉.基于内聚力模型非均质材料损伤与失效的数值研究.硕士学位论文,浙江工业大学,2015.
9 Gu Z P, Study on delamination failure mechanism of composite laminates based on cohesive theory. Master’s Thesis, Zhejiang University, China,2016(in Chinese).
顾志平.基于内聚力理论的复合材料分层失效机理研究.硕士学位论文,浙江大学,2016.
10Mcgarry J P, Éamonn Ó Máirtín, Parry G, et al. Journal of the Mechanics & Physics of Solids,2014,63(1),336.
11Éamonn Ó Máirtín, Parry G, Beltz G E, et al. Journal of the Mechanics & Physics of Solids,2014,63(1),363.
12Huang L G. The analysis of cohesive zone model and user-defined subroutine development in finite element method. Master’s Thesis, Zhengzhou University,China,2010(in Chinese).
黄刘刚.内聚力模型的分析及有限元子程序开发.硕士学位论文,郑州大学,2010.
13Dugdale D S. Journal of the Mechanics & Physics of Solids,1960,8(2),100.
14Barenblatt G I. Advances in Applied Mechanics,1962,7,55.
15Li Zhuo,The application of CZM and XFEM methods on crack propagation simulation. Master’s Thesis, Guangxi University, China,2013(in Chinese).
李卓.内聚力和扩展有限元方法在裂纹扩展模拟中的应用研究.硕士学位论文,广西大学,2013.
16Sun J Q, Ji D M, Tan J Z, et al. Journal of Shanghai University of Electric Power,2016,32(2),129(in Chinese).
孙家啟,纪冬梅,唐家志,等.上海电力学院学报,2016,32(2),129.
17Zhou M, Yao W B, Yang X S, et al. Surface & Coatings Technology,2014,240(7),40.
18Yang L, Zhou Y C, Mao W G, et al. Applied Physics Letters,2008,93(23),299.
19Biaas M, Majerus P, Herzog R, et al. Materials Science & Engineering A,2005,412(1-2),241.
20Yang X S. Finite element analysis of failure process of thermal barrier coatings by using cohesive element. Master’s Thesis, Xiangtan University, China,2013(in Chinese).
杨雪松.基于内聚力单元热障涂层体系失效过程有限元模拟分析.硕士学位论文,湘潭大学,2013.
21Wang L, Li D C, Yang J S, et al. Journal of the European Ceramic Society,2016,36(6),1313.
22Yang X S, Wan J, Dai C Y, et al. Surface & Coatings Technology,2013,223(52),87.
23Fan X L, Xu R, Zhang W X, et al. Applied Surface Science,2012,258(24),9816.
24Fan X, Zhang W, Wang T, et al. Applied Surface Science,2011,257(15),6718.
25Wang L, Yang J S, Ni J X, et al. Surface & Coatings Technology,2016,285,98.
26Fleck N A, Cocks A C F, Lampenscherf S. Journal of the European Ceramic Society,2014,34(11),2687.
27Moridi A, Azadi M, Farrahi G H. Surface & Coatings Technology,2014,243(4),91.
28Wang L, Zhao Y X, Zhong X H, et al. Journal of Thermal Spray Technology,2014,23(3),431.
29Vermaak N, Michailidis G, Estevez R, et al. Structural & Multidisciplinary Optimization,2014,50(4),623.
30Nordhorn C, Mücke R, VaBen R. Surface & Coatings Technology,2014,258,181.
31Aleksanoglu H, Scholz A, Oechsner M, et al. International Journal of Fatigue,2013,53(7),40.
32Wu D J, Mao W G, Zhou Y C, et al. Applied Surface Science,2011,257(14),6040.
33Chen Z B, Wang Z G, Zhu S J. Surface & Coatings Technology,2011,205(15),3931.
34Yao W B, Dai C Y, Mao W G, et al. Surface & Coatings Technology,2012,206(18),3803.
35Qian L, Zhu S, Kagawa Y, et al. Surface & Coatings Technology,2003,173(2-3),178.
36Zhu W, Yang L, Guo J W, et al. Applied Surface Science,2014,315(315),292.
37Zhu W, Yang L, Guo J W, et al. In: National Physical and Mechanical Conference. Xiangtan,2014,pp.76.
38Yang L, Zhong Z C, You J, et al. Surface & Coatings Technology,2013,232(10),710.
39Yang L, Zhong Z C, Zhou Y C, et al. Journal of Mechanics,2016,32(2),1.
40Guo S, Kagawa Y. Scripta Materialia,2004,50(11),1401.
41Xia S Q. The research of the crack propagation in thermal spray remanufacturing product. Master’s Thesis, Beihang University, China, 2016(in Chinese).
夏世琦.热喷涂再制造件的裂纹扩展行为研究.硕士学位论文,北京航空航天大学,2016.
42Leo C V D, Luk-Cyr J, Liu H, et al. Acta Materialia,2014,71(1),306.
43Hille T S, Suiker A S J, Turteltaub S. Engineering Fracture Mechanics,2009,76(6),813.
44Yao W B, Dai C Y, Mao W G, et al. Surface & Coatings Technology,2012,206(18),3803.
45Qian L, Zhu S, Kagawa Y, et al. Surface & Coatings Technology,2003,173(2-3),178.
46Zhu W, Yang L, Guo J W, et al. Applied Surface Science,2014,315(315),292.
47Chen X, Hutchinson J W, He M Y, et al. Acta Materialia,2003,51(7),2017.
48Busso E P, Wright L, Evans H E, et al. Acta Materialia,2007,55(5),1491.
49Wang L, Fan Q, Liu Y, et al. Materials & Design,2015,86,89.
50Bialas M. Surface & Coatings Technology,2008,202(24),6002.
[1] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[2] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[3] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[4] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[5] 陈守东. MCrAlY粘结层的微观组织及制备方法研究进展[J]. 材料导报, 2019, 33(15): 2582-2588.
[6] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[7] 韩志勇, 史文新, 王者, 丁坤英, 程涛涛. HCPEB表面改性对镀铝CoCrAlY涂层显微组织及氧化性能的影响[J]. 材料导报, 2019, 33(14): 2392-2396.
[8] 高丽华, 冀晓鹃, 侯伟骜, 卢晓亮, 章德铭. 等离子物理气相沉积准柱状结构YSZ涂层的制备及抗热震性能[J]. 材料导报, 2019, 33(12): 1963-1968.
[9] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[10] 韩志勇, 丘珍珍, 史文新. 强流脉冲电子束粘结层表面改性对热障涂层热震及残余应力的影响[J]. 材料导报, 2018, 32(24): 4303-4308.
[11] 赵伦, 何晓聪, 张先炼, 丁燕芳, 刘洋, 邓聪. TA1钛合金自冲铆接头力学性能及微动行为[J]. 材料导报, 2018, 32(20): 3579-3583.
[12] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹. 基于声发射技术的热障涂层损伤行为[J]. 材料导报, 2018, 32(19): 3368-3374.
[13] 崔巍, 王珂, 姜民政, 马春阳, 冯子明, 冷建成. 管道焊缝裂纹扩展的流固磁耦合表征[J]. 材料导报, 2018, 32(16): 2852-2858.
[14] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[15] 温飞娟, 董丽虹, 王海斗, 吕振林, 底月兰. 热喷涂零件界面裂纹扩展行为影响因素研究[J]. 材料导报, 2018, 32(16): 2793-2797.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed