Please wait a minute...
材料导报  2019, Vol. 33 Issue (15): 2582-2588    https://doi.org/10.11896/cldb.18060127
  金属与金属基复合材料 |
MCrAlY粘结层的微观组织及制备方法研究进展
陈守东1,2
1.昆明理工大学材料科学与工程学院,昆明 650093
2.铜陵学院机械工程学院,铜陵 244061
Research Progress on Microstructure and Preparation Methods for MCrAlY Bond Coats
CHEN Shoudong1,2
1.Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
2.School of Mechanical Engineering, Tongling University, Tongling 244061
下载:  全 文 ( PDF ) ( 2023KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热障涂层具有良好的隔热和抗氧化效果,是目前最为先进的高温防护涂层之一,与先进高效气膜冷却技术、高温结构材料一起并称为先进航空发动机及高压涡轮叶片的三大关键技术,被广泛应用于航空航天、汽车和大型火力发电等行业。高性能的热障涂层体系可以对基体金属进行充分的保护,延长航空发动机和燃气轮机的使用寿命。
热障涂层(TBCs)由三个部分组成:粘结层(BC)、热生长氧化物层(TGO)和陶瓷顶层(TC)。MCrAlY涂层是陶瓷层和基底合金之间的粘结层,它可以提高基底高温合金的抗氧化、抗腐蚀能力以及陶瓷层的粘结强度,其热膨胀系数、屈服强度、抗蠕变强度等物理与力学性能直接决定热障涂层体系的服役性能和寿命。当TBCs在高温下服役时,TGO才会形成。而在TGO生成初期,其可在一定程度上起到抑制有害氧化物生长的作用,即可视为抗氧化涂层。但是随着TBCs在高温下服役时间的延长,基底合金与MCrAlY粘结涂层之间的元素互扩散行为加剧,TGO不断生长以及热生长氧化物发生变形产生裂纹,最终导致涂层整体发生破坏性剥落,失去保护作用,造成巨大的安全事故和经济损失。热障涂层粘结层的抗氧化性能是决定热障涂层寿命的主要因素,而粘结涂层的成分设计及制备工艺是影响粘结层高温抗氧化性能的关键因素。为提高TBCs的高温服役性能和延长其使用寿命,国内外学者在MCrAlY粘结涂层的元素成分优化设计及组织结构、抑制基底合金/粘结层元素互扩散的扩散障、建立精确预测TBCs服役性能的热力学-动力学模型以及优化粘结涂层制备工艺等方面开展了大量细致的研究工作。
采用MCrAlY(M=Ni、Co或Ni+Co)粘结层的热障涂层具有良好的高温性能,可降低热端部件的温度,以延长热障涂层的使用寿命和提高其效率。寻求性能优良的粘结涂层已成为热障涂层领域的研究热点。热障涂层用粘结层的组成元素(Ni、Co、Cr、Al)、添加的微量活性元素(Y、Hf、Zr、Ta、Si或贵金属等)以及与涂层厚度、空隙、界面粗糙度和氧含量相关的制备工艺对合金涂层的性能起决定性作用。目前制备TBCs的技术主要有大气等离子喷涂(APS)技术和电子束-物理气相沉积(EB-PVD)技术。其中,APS层状结构热障涂层的沉积速率较高,隔热性能较好,但抗热震性能较差;而EB-PVD柱状结构热障涂层具备优异的抗热震性能和应变容限,但隔热性能较差、沉积速率低且制备成本高。为满足未来高推重比航空发动机叶片发展的需求,开发新型TBCs体系材料及新型TBCs制备技术是必经之路。
本文综述了近年来热障涂层用MCrAlY粘结层的发展,主要介绍了MCrAlY粘结层的研究背景、应用领域及优点,讨论了粘结层成分优化设计、微观组织、性能退化以及制备方法等方面的最新研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈守东
关键词:  MCrAlY粘结层  成分优化设计  热障涂层  等离子喷涂  电子束-物理气相沉积    
Abstract: Thermal barrier coatings (TBCs) are one of the most advanced high temperature protective coatings and being wildly used in aeronautic, astronautics, motor industry and heat power station, for their good performance at thermal barrier and oxidation resistance. TBC together with the advanced high-performance air film cooling technology, high temperature structural materials are regarded as three key technologies for advanced aero-engines high pressure turbine blade. TBC is the important protection technique in order to protect substrate metal and improve the service life of aircraft engines and gas turbines. Thermal barrier coatings consist of three parts: the bond coat (BC), the thermally grown oxide (TGO), and the ceramic top coat (TC). A metallic bond coat (MCrAlY) between the ceramic top coat and Ni-base superalloy provides oxidation resistance for the base material and adherence of ceramic coating. Its physical and mechanical properties, in particular coefficient of thermal expansion as well as yield and creep strength, are crucial for the TBC system performance.
The TGO does not appear until the TBC system encounters elevated temperature. At the beginning of TGO growth, the TGO layer functions as an oxidation barrier coating which suppresses the formation of other detrimental oxides during extended thermal exposure. The TGO then thickens and the degradation of the MCrAlY bond coat during TBCs high-temperature sever due to oxidation and interdiffusion with the substrate alloy, eventually contributing to TBCs spallation, incapable of protecting blades from high-temperature and oxidation environment, resulting in severe accidents and economic loss. The high-temperature oxidation resistance of bond coat determines lifetime of TBC, in which compositions design and manufacture method of the bond coat are the main reason influencing the high-temperature oxidation resistance of bond coat. The bond coat-rela-ted developments in the recent years have mainly concentrated on defining of new bond coat compositions and/or multilayered bond coats, deve-loping new diffusion barriers to minimize interdiffusion issues, constructing the thermodynamic-kinetic model and varying manufacturing technologies.
TBCs with MCrAlY (M=Ni, Co or Ni+Co) bond coat is the most advanced high temperature protective coatings with good high temperature performance which can produce large temperature drop on the metal parts, prolong the service life of the engine parts and improve the thermal efficiency of engine parts. Searching for new bond coats (BC) for thermal barrier coatings has become one of the research focus in the TBCs field. The performance of MCrAlY (M=Ni, Co or Ni+Co) bond coats for thermal barrier coatings is substantially affected by the contents of Ni, Co, Cr and Al as well as minor additions of Y, Hf, Zr, Ta, Si, and noble metal, etc., but also by manufacturing-related properties such as coating thickness, porosity, surface roughness, and oxygen content. An in-depth understanding of the high temperature protection of TBCs is important to further developing new advanced bond coats material in the future. Currently, the traditional fabrication technology of TBCs mainly includes atmospheric plasma spraying (APS) and electron beam physical vapor deposition (EB-PVD). The lamellar TBCs fabricated by APS possess have high deposition rate, good thermal insulation performance and bad thermal shock resistance whereas the columnar TBCs deposited by EB-PVD have good thermal shock resistance and strain tolerance, poor thermal insulation performance, low deposition rate and high cost. To meet these demands of the next-generation aero-engines with higher thrust weight ratio, developing a new material system and new manufacture method for TBCs is necessary.In this paper, we review the recent progress and application of MCrAlY bond coats for TBCs, the background, application and advantages of the MCrAlY bond coats are presented, and the state of the art in BC is summarized from the viewpoint of composition optimizing, microstructure, degradation and manufacture methods.
Key words:  MCrAlY bond coat    composition optimizing    thermal barrier coatings    atmospheric plasma spraying (APS)    electron beam physical vapor deposition (EB-PVD)
               出版日期:  2019-08-10      发布日期:  2019-07-02
ZTFLH:  TG172.82  
基金资助: 国家自然科学基金(51804219);安徽省自然科学基金(1808085QE161);铜陵学院人才科研启动基金(2016tlxyrc05)
作者简介:  陈守东,博士,铜陵学院机械工程学院讲师。2010年7月本科毕业于铜陵学院机械工程学院,2016年7月在东北大学轧制技术及连轧自动化国家重点实验室材料加工工程取得博士学位,2018年1月至今在昆明理工大学进行博士后研究工作。主要从事热障涂层体系设计及第一性原理计算的研究工作,以第一作者身份在International Journal of Mechanical SciencesTransactions of Nonferrous Metals Society of China、《金属学报》中英文版等SCI学术期刊发表研究论文30余篇。
引用本文:    
陈守东. MCrAlY粘结层的微观组织及制备方法研究进展[J]. 材料导报, 2019, 33(15): 2582-2588.
CHEN Shoudong. Research Progress on Microstructure and Preparation Methods for MCrAlY Bond Coats. Materials Reports, 2019, 33(15): 2582-2588.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060127  或          http://www.mater-rep.com/CN/Y2019/V33/I15/2582
[1] Rabiei A, Evans A G. Acta Materialia,2000,48(15),3963.
[2] Padture N P, Gell M, Jordan E H. Science,2002,296(5566),280.
[3] Rajasekaran B, Mauer G, Vaen R. Journal of Thermal Spray Technology,2011,20(6),1209.
[4] Gleeson B. Journal of Propulsion and Power,2006,22(2),375.
[5] Evans A G, Mumm D R, Hutchinson J W, et al. Progress in Materials Science,2001,46(5),505.
[6] Lima R S, Nagy D, Marple B R. Journal of Thermal Spray Technology,2015,24(1-2),152.
[7] Umar V, Balasubramanian K. Progress in Organic Coatings,2016,90,54.
[8] Yang D M, Gao Y, Zhou Q F, et al. China Surface Engineering,2017,30(5),119(in Chinese).
杨德明,高阳,周起帆,等.中国表面工程,2017,30(5),119.
[9] Strangeman T, Raybould D, Jameel A, et al. Surface and Coatings Technology,2007,202(4-7),658.
[10] Mu R D, Wang Z K, Lu F, et al. Equipment Environmental Engineering,2016,13(3),63(in Chinese).
牟仁德,王占考,陆峰,等.装备环境工程,2016,13(3),63.
[11] Zhou Y H, Lu X, Ji Y P, et al. China Mechanical Engineering,2016,27(7),965(in Chinese).
钟颖虹,陆辛,计亚平,等.中国机械工程,2016,27(7),965.
[12] Li Q L, Liu H F. Thermal Spray Technology,2016,8(1),17(in Chinese).
李其连,刘怀菲.热喷涂技术,2016,8(1),17.
[13] Zhang B Y, Shi J, Yang G J, et al. Journal of Thermal Spray Technology,2015,24(4),611.
[14] Richer P, Yandouzi M, Beauvais L, et al. Surface and Coatings Techno-logy,2010,204(24),3962.
[15] Rana N, Jayaganthan R, Prakash S. Transactions of the Indian Institute of Metals,2013,67(3),393.
[16] Ni L Y, Liu C, Huang H, et al. Journal of Thermal Spray Technology,2011,20(5),1133.
[17] Goward G W. Surface and Coatings Technology,1998,108-109(98),73.
[18] Stroosnijder M F, Merrel R, Bennett M J. High Temperature Technology,1994,12(1),53.
[19] Quadakkers W J, Tyagi A K, Clemens D, et al. In: TMS Annual Meeting, Symposium: High Temperature Coatings III, Proc. Elevated Temperature Coatings: Science and Technology Ⅲ. Warrendale, Pennsylvania,1999,pp.119.
[20] Brindley W J, Miller R A. Surface and Coatings Technology,1990,43(90),446.
[21] Hou P Y. In: Shreir’s corrosion. Manchester,2010,pp.215.
[22] Tortorelli P F, Brady M P. In: Shreir’s Corrosion. Manchester,2010,pp.541.
[23] Longa Y, Takemoto M. Advanced Manufacturing Processes,1995,10(2),217.
[24] Zhen D X, Wang Y, Gou J F, et al. Thermal Spray Technology,2016,8(4),14(in Chinese).
甄东霞,王铀,勾俊峰,等.热喷涂技术,2016,8(4),14.
[25] Fox P, Tatlock G J. Materials Science and Technology,1989,5(8),816.
[26] Czech N, Schmitz F, Stamm W. Surface and Coatings Technology,1994,68-69(6549),17.
[27] Achar D R G, Munoz-Arroyo R, Singheiser L, et al. Surface and Coa-tings Technology,2004,187(2-3),272.
[28] Toscano J, Gil A, Huttel T, et al. Surface and Coatings Technology,2007,202(4-7),603.
[29] Birks N, Meier G H, Pettit F S. Introduction to the high-temperature oxidation of metals, Cambridge University Press, Cambridge,2006.
[30] Seraffon M, Simms N J, Sumner J, et al. Surface and Coatings Technology,2011,206(7),1529.
[31] Tian H, Mu R D, He L M, et al. Failure Analysis and Prevention,2012,7(4),228(in Chinese).
田贺,牟仁德,何利民,等.失效分析与预防,2012,7(4),228.
[32] Qiu L. Studies on composition optimizing of bond coat in thermal barrier coatings. Master’s Thesis, Shanghai Jiao Tong University, China,2014(in Chinese).
邱琳.热障涂层粘结层成分优化设计研究.硕士学位论文,上海交通大学,2014.
[33] Song P, Lu J S, Zhao B L, et al. Materials Review,2007,21(7),59(in Chinese).
宋鹏,陆建生,赵宝禄,等.材料导报,2007,21(7),59.
[34] Jansson B, Schalin M, Selleby M, et al. In: The Thermal-call Database System.Quebec,1993,pp.57.
[35] Bozza F, Bolelli G, Giolli C, et al. Surface and Coatings Technology,2014,239(25),147.
[36] Liu J K, Cao J, Lin X T, et al. Materials and Design,2013,49,622.
[37] Wang R L, Gong X Y, Peng H, et al. Applied Surface Science,2015,326,124.
[38] Pillai R, Sloof W G, Chyrkin A, et al. High Temperature Technology,2015,32(1-2),57.
[39] Naumenko D, Shemet V, Singheiser L, et al. Journal of Materials Science,2009,44(7),1687.
[40] Zhou X, Xu Z H, Mu R D, et al. Journal of Alloys and Compounds,2014,591(8),41.
[41] Latief F H, Kakehi K. Materials and Design,2014,56(4),816.
[42] Ji Q, Song P, Wang Y Q, et al. Journal of Functional Materials,2016,47(4),74(in Chinese).
季强,宋鹏,王逸群,等.功能材料,2016,47(4),74.
[43] Duhamel C, Chieux M, Molins R, et al. Materials at High Temperatures,2012,29(2),136.
[44] Shifler D. Materials at High Temperatures,2015,32(1-2),148.
[45] Vassen R, Stuke A, St?ver D. Journal of Thermal Spray Technology,2009,18(2),181.
[46] Evans H E, Taylor M P. Oxidation of Metals,2001,55(1-2),17.
[47] Helminiak M A, Yanar N M, Pettit F S, et al. Surface and Coatings Technology,2009,204(6-7),793.
[48] Feuerstein A, Knapp J, Taylor T, et al. Journal of Thermal Spray Technology,2008,17(2),199.
[49] Strangeman T, Raybould D, Jameel A, et al. Surface and Coatings Technology,2007,202(4-7),658.
[50] Haynes J A, Unocic K A, Pint B A. Surface and Coatings Technology,2013,215,39.
[51] Nowak W, Naumenko D, Mor G, et al. Surface and Coatings Technology,2014,260,82.
[52] Zhen H J, Tian L X, Dong Z H, et al. Journal of Aeronautical Materials,2018,38(2),52(in Chinese).
甄会娟,田礼熙,董志宏,等.航空材料学报,2018,38(2),52.
[53] Mauer G, Vaben R. Journal Physicals: Conference Series,2012,406,012005.
[54] Kuang Z Q, Chen W L, Liu M, et al. Surface Technology,2017,46(3),84(in Chinese).
邝子奇,陈文龙,刘敏,等.表面技术,2017,46(3),84.
[55] Nowak W. High temperature corrosion of alloys and coatings in gas-turbines fired with hydrogen-rich syngas fuels. Ph.D. Thesis, RWTH Aachen University, Germany,2014.
[1] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[2] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[3] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[4] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[5] 韩志勇, 史文新, 王者, 丁坤英, 程涛涛. HCPEB表面改性对镀铝CoCrAlY涂层显微组织及氧化性能的影响[J]. 材料导报, 2019, 33(14): 2392-2396.
[6] 高丽华, 冀晓鹃, 侯伟骜, 卢晓亮, 章德铭. 等离子物理气相沉积准柱状结构YSZ涂层的制备及抗热震性能[J]. 材料导报, 2019, 33(12): 1963-1968.
[7] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[8] 刘晓梅, 贺定勇, 周正, 王国红, 王曾洁, 吴旭. 微束等离子喷涂羟基磷灰石涂层相结构的微拉曼光谱研究[J]. 材料导报, 2019, 33(10): 1634-1639.
[9] 汪倡, 庞学佳, 高宗鸿, 刘金娜, 房永超, 崔秀芳, 刘二宝, 金国. YSZ纤维增强等离子喷涂Al2O3/8YSZ涂层耐磨性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 563-568.
[10] 韩志勇, 丘珍珍, 史文新. 强流脉冲电子束粘结层表面改性对热障涂层热震及残余应力的影响[J]. 材料导报, 2018, 32(24): 4303-4308.
[11] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[12] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹. 基于声发射技术的热障涂层损伤行为[J]. 材料导报, 2018, 32(19): 3368-3374.
[13] 郭晓亮, 周生刚, 张能锦, 竺培显, 曹勇, 李洪山. 等离子喷涂法制备Al/TiB2复合电极及电化学性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 21-24.
[14] 赵钦, 马国政, 王海斗, 李国禄, 陈书赢, 刘明. 等离子喷涂用Y2O3稳定ZrO2空心球形粉末制备技术及涂层性能的研究现状*[J]. 《材料导报》期刊社, 2017, 31(15): 60-67.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed