Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 1963-1968    https://doi.org/10.11896/cldb.18040262
  无机非金属及其复合材料 |
等离子物理气相沉积准柱状结构YSZ涂层的制备及抗热震性能
高丽华1,2, 冀晓鹃1,2, 侯伟骜1,2, 卢晓亮1,2, 章德铭1,2
1 北京矿冶科技集团有限公司,北京 100160
2 特种涂层材料与技术北京市重点实验室,北京 102206
Thermal Shock-resistance Property of Quasi-Columnar YSZ Thermal BarrierCoatings Prepared by Plasma Spray-Physical Vapor Deposition
GAO Lihua1,2, JI Xiaojuan1,2, HOU Wei’ao1,2, LU Xiaoliang1,2, ZHANG Deming1,2
1 Beijing General Research Institute of Mining and Metallurgy Technology Group, Beijing 100160
2 Beijing Key Laboratory of Special Coating Materials and Technology, Beijing 102206
下载:  全 文 ( PDF ) ( 4174KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作对比研究了喷涂功率、喷涂距离等主要工艺参数对等离子物理气相沉积(PS-PVD)准柱状结构氧化钇稳定氧化锆(YSZ)涂层微观结构及沉积速率的影响,并对优选喷涂工艺制备的YSZ涂层热导率进行了检测。同时,研究了粘结层粗糙度对YSZ热障涂层的微观结构及抗热震性能的影响,并对涂层失效行为进行了分析。结果表明:喷涂功率为120 kW、送粉率为20 g/min、喷涂距离为900 mm时,涂层既具备良好的准柱状结构,又有较高的沉积速率;优选喷涂工艺制备的YSZ准柱状结构涂层在1 100 ℃时的热导率约为0.934 W/(m·K);与未打磨处理的粘结层相比,经打磨处理的粘结层表面的YSZ涂层柱状晶排列整齐,孔隙和缺陷较少,具备更好的抗热震性能,1 100 ℃及1 150 ℃涂层的抗热震次数分别可达到258次和210次。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高丽华
冀晓鹃
侯伟骜
卢晓亮
章德铭
关键词:  等离子物理气相沉积(PS-PVD)  热障涂层(TBC)  喷涂工艺  抗热震性能    
Abstract: In this work, the influence of the main spray parameters, such as spray distance, on the microstructure and deposition efficiency of plasma spray-physical vapor deposition (PS-PVD) quasi-columnar structured yttria-stabilized zirconia (YSZ) coating was determined, and the thermal conductivity of the optimum YSZ coating was examined. In addition, the influence of the roughness of the bond coat on the microstructure and thermal shock resistance of the YSZ thermal barrier coatings were also studied, and their failure behaviors were analyzed. The results showed that the coating exhibited good quasi-columnar microstructure with high deposition efficiency when using the parameters of spray power 120 kW, feed rate 20 g/min and spray distance 900 mm. The thermal conductivity of the coating is approximately 0.934 W/(m·K) at 1 100 ℃. Compared with that deposited on the unpolished bond coat, the YSZ columnar crystals on the polished bond coat were well-arranged with less pores and defects and showed better thermal shock resistance performance, which had an average life of 258 cycles and 210 cycles at 1 100 ℃ and 1 150 ℃, respectively.
Key words:  plasma spray-physical vapor deposition (PS-PVD)    thermal barrier coatings (TBCs)    spray process    thermal shock-resistance property
                    发布日期:  2019-05-31
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金青年基金(51801012)
通讯作者:  gaolihua87@126.com   
作者简介:  高丽华,北京矿冶科技集团有限公司,高级工程师。2016年毕业于北京航空航天大学,获得材料学博士学位。同年加入北京矿冶科技集团有限公司工作至今,主要从事先进航空发动机高温防护涂层方面的研究。
引用本文:    
高丽华, 冀晓鹃, 侯伟骜, 卢晓亮, 章德铭. 等离子物理气相沉积准柱状结构YSZ涂层的制备及抗热震性能[J]. 材料导报, 2019, 33(12): 1963-1968.
GAO Lihua, JI Xiaojuan, HOU Wei’ao, LU Xiaoliang, ZHANG Deming. Thermal Shock-resistance Property of Quasi-Columnar YSZ Thermal BarrierCoatings Prepared by Plasma Spray-Physical Vapor Deposition. Materials Reports, 2019, 33(12): 1963-1968.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040262  或          http://www.mater-rep.com/CN/Y2019/V33/I12/1963
1 Steven A. Mechanical Engineering, 1995, 177(10), 66.
2 Lughi V, Tolpygo V K, Clarke D R. Materials Science and Engineering A, 2004, 368(1-2), 212.
3 Fan Y D. Processing of electron beam and ion beam, China Machine Press, China, 1989 (in Chinese).
范玉殿. 电子束和粒子束加工,机械工业出版社, 1989.
4 Jeremy Bernier. Evolution of characterization of partially stabilized zirconia (7wt% Y2O3) thermal barrier coatings deposited by electron beam physical vapor deposition. Master’s Thesis, Worcester Polytechnic Institute, USA, 2002.
5 Movchan B A. Journal of the Minerals Metals & Materials Society, 1996, 48(11), 40.
6 Niessen K V, Gindrat M. Journal of Thermal Spray Technology, 2011, 20(4), 736.
7 Refke A, Hawley D, Doesburg J, et al. In: Proceedings of the 2005 International Thermal Spray Conference. Basle, Switerland, 2005, pp. 438.
8 Gao Y. Thermal Spray Technology, 2010, 16 (3), 13 (in Chinese).
高阳. 热喷涂技术, 2010, 16 (3), 13.
9 Li C Y, Guo H B, Gao L H, et al. Journal of Thermal Spray Technology, 2015, 24(3), 534.
10Mauer G, Hospach A, Va&en R. Surface and Coatings Technology, 2013, 220, 219.
11Gao L H, Guo H B, Wei L L, et al. Surface and Coatings Technology, 2015, 276, 424.
12Niessen K V, Gindrat M, Refke A. In: Proceedings of the 2009 International Thermal Spray Conference. Las Vegas, USA, 2009, pp. 729.
13Gao L H, Guo H B, Wei L L, et al. Ceramics International, 2015, 41, 8305.
14Gao L H, Yu Y G, Jia F, et al. Thermal Spray Technology, 2017, 9 (2), 1 (in Chinese).
高丽华, 于月光, 贾芳, 等. 热喷涂技术, 2017, 9 (2), 1.
15Mauer G, Jarligo M O, Rezanka S, et al. Surface and Coatings Technology, 2015, 268, 52.
16Goral M, Kotowski S, Nowotnik A, et al. Surface and Coatings Technology, 2013, 237, 51.
17Clarke D R, Phillpot S R. Materials Today, 2005, 8(6), 22.
18Bobzin K, Bagcivan N, Brögelmann T, et al.Surface and Coatings Technology, 2013, 237, 56.
19Va&en R, Kerkhoff G, Stöver D. Materials Science and Engineering A, 2001, 303(1-2), 100.
[1] 解惠贞,孙建涛,何轩宇,薛朋飞,秦淑颖. 密度对C/C复合材料热力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(2): 268-271.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed