Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 1959-1962    https://doi.org/10.11896/cldb.18030250
  无机非金属及其复合材料 |
W掺杂对Zn0.98Al0.02O陶瓷热电性能的影响
李怀明, 孙秋, 宋英
哈尔滨工业大学化工与化学学院,哈尔滨 150001
Effect of W Doping on Thermoelectric Properties of Zn0.98Al0.02O Ceramics
LI Huaiming, SUN Qiu, SONG Ying
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001
下载:  全 文 ( PDF ) ( 2314KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用溶胶-凝胶法合成了Zn0.98-xAl0.02WxO (x=0、 0.005、 0.01、 0.02)前驱粉体,在1 400 ℃、N2氛围下烧结5 h将其煅烧成块状陶瓷。通过XRD和SEM对样品的组成和形貌进行表征,并研究了W掺杂对Zn0.98Al0.02O陶瓷热电性能的影响。热电测试结果表明:材料的塞贝克系数绝对值|S|随W的掺入量的增加而先减小后增大,电导率则呈现相反的变化趋势。773 K时,x=0.005样品的功率因子最大,达到3.6×10-4 W/(m·K),比Zn0.98Al0.02O提高了2倍。此外,W的掺杂有效降低了材料的热导率。773 K时,x=0.005样品的无量纲优值(ZT值)达到最大,为0.03,比Zn0.98Al0.02O提高了2.3倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李怀明
孙秋
宋英
关键词:  Zn0.98Al0.02O陶瓷  热电性能  氧化锌  W掺杂    
Abstract: Zn0.98-xAl0.02WxO (x=0, 0.005, 0.01, 0.02) precursor powders were synthesized via a sol-gel method and their ceramics were prepared for 5 h at 1 400 ℃ in N2 atmosphere. The phase composition and microstructure of the samples were characterized by XRD and SEM. The effects of W doping on the thermoelectric properties of Zn0.98Al0.02O ceramics were investigated. The absolute value of the Seebeck coefficient of the material decreased first and then increased with the increase of the amount of W, and the conductivity showed an opposite trend. The sample with x=0.005 showed the highest power factor of 3.6×10-4 W/(m·K) at 773 K, which is twice higher than Zn0.98Al0.02O. In addition, the doping of W effectively reduced the thermal conductivity. The highest ZT of 0.03 was obtained by x=0.005 sample at 773 K, which was 2.3 times higher than Zn0.98Al0.02O.
Key words:  Zn0.98Al0.02O ceramics    thermoelectric property    zinc oxide    W doping
                    发布日期:  2019-05-31
ZTFLH:  TB321  
通讯作者:  songy@hit.edu.cn   
作者简介:  李怀明,2018年7月毕业于哈尔滨工业大学化工与化学学院,获得工程硕士学位。于2016年9月至2018年7月在哈尔滨工业大学化工与化学学院学习,主要研究方向为氧化物热电陶瓷。宋英,哈尔滨工业大学化工与化学学院,博导,教授。2000年毕业于哈尔滨工业大学,材料学博士学位。主要从事于氧化物热电陶瓷材料和信息功能陶瓷材料的研究。近5年,先后承担和参与国家自然科学基金及省重点基金、省市攻关项目等省部级课题7项;作为第一、二作者发表核心以上论文26篇(SCI检索11篇,EI检索15篇)。申请发明专利8项,作为第一发明人,获国家发明专利授权6项。
引用本文:    
李怀明, 孙秋, 宋英. W掺杂对Zn0.98Al0.02O陶瓷热电性能的影响[J]. 材料导报, 2019, 33(12): 1959-1962.
LI Huaiming, SUN Qiu, SONG Ying. Effect of W Doping on Thermoelectric Properties of Zn0.98Al0.02O Ceramics. Materials Reports, 2019, 33(12): 1959-1962.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030250  或          http://www.mater-rep.com/CN/Y2019/V33/I12/1959
1 Poudel B, Hao Q, Ma Y, et al. Science, 2008, 320(5876),634.
2 Lalonde A D, Pei Y, Snyder G. Energy & Environmental Science, 2011, 4(6), 2090.
3 Lin J, Ma L, Zheng Z, et al. Materials Letters, 2017, 203,5.
4 Colder H, Guilmeau E, Harnois C, et al. Journal of the European Ceramic Society, 2011, 31(15), 2957.
5 Wang T T, Sun Q, Song Y. Chinese Journal Inorganic Chemistry, 2017, 33(4),659 (in Chinese).
王婷婷, 孙秋, 宋英.无机化学学报, 2017, 33(4),659.
6 Park K, Seong J K, Kwon Y, et al. Materials Research Bulletin,2008, 43(1), 54.
7 Feng B, Li G, Zhang C, et al. Materials Review A:Review Papers, 2017, 31(11),24(in Chinese).
冯波, 李光强, 张城诚, 等.材料导报:综述篇, 2017, 31(11),24.
8 Ohtaki M, Tsubota T, Eguchi K, et al. Journal of Applied Physics, 1996, 79(3), 1816.
9 Ong K P, Singh D J, Wu P. Physical Review B Condensed Matter, 2011, 83(11),115110.
10Tian T, Cheng L, Xing J, et al. Materials & Design, 2017, 132, 479.
11Yong N, Naenkieng D, Kidkhunthod P, et al. Ceramics International, 2017,43(2), 1695.
12Zhang D B, Li H Z, Zhang B P, et al. RSC Advances, 2017, 7(18), 10855.
13Ohtaki M, Araki K, Yamamoto K. Journal of Electronic Materials, 2009, 38(7), 1234.
14Yamaguchi H, Chonan Y, Oda M, et al. Journal of Electronic Materials, 2011, 40(5), 723.
15Park K, Ko K Y, Seo W S, et al. Journal of the European Ceramic Society, 2007, 27(2-3), 813.
16Hoemke J, Khan A U, Yoshida H, et al. Frontiers in Materials Science,2016,1763,41653.
17Wang Y, Sui Y, Cheng J, et al. Journal of Alloys & Compounds, 2008, 448(1), 1.
18Fergus J W. Journal of the European Ceramic Society, 2012, 32(3), 525.
19Tsubota T, Ohtaki M, Eguchi K, et al. Journal of Materials Chemistry, 1997, 7(1), 85.
20Shirouzu K, Kawamoto T, Enomoto N, et al. Japanese Journal of Applied Physics, 2010, 49(1),010201.
21Bernik S, Daneu N, Renik A. Journal of the European Ceramic Society, 2004, 24(15),3703.
22alkus T, atas L, Keionis A, et al. Solid State Ionics, 2015, 271, 73.
23Kinemuchi Y, Nakano H, Mikami M, et al. Journal of Applied Physics, 2010, 108(5), 053721.
24Kang M, Cho K, Kim J, et al. Acta Materialia, 2014, 73, 251.
[1] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[2] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[3] 黄国庆, 白震媛, 陈兆文, 刘琦, 王君. 铀(Ⅵ)在氧化锌修饰聚丙烯腈纤维上的吸附行为[J]. 材料导报, 2019, 33(14): 2436-2443.
[4] 袁大超, 郭双, 郝建军, 马跃进, 王淑芳. 脉冲激光沉积c轴取向BiCuSeO外延薄膜及其热电性能[J]. 材料导报, 2019, 33(1): 152-155.
[5] 李丹, 张忞灏, 廖佩姿, 谢远, 甄贺伟, 徐晓玲, 周祚万. 低维氧化锌晶面调控及催化抗菌活性研究进展[J]. 材料导报, 2019, 33(1): 56-64.
[6] 甘一升, 陈苗苗, 王玉龙, 万丽, 孔梦琴, 胡航, 王世敏. 以ZnO纳米棒阵列为电子传输层的无空穴层有机-无机杂化钙钛矿太阳能电池[J]. 材料导报, 2018, 32(23): 4047-4050.
[7] 康淮,陆轴,钟志有,龙浩. 磁控溅射制备镁镓共掺氧化锌透明半导体薄膜及其性能研究[J]. 《材料导报》期刊社, 2018, 32(11): 1938-1942.
[8] 冯波, 李光强, 张城诚, 李亚伟, 贺铸, 樊希安. 温差发电用BiCuSeO基热电材料的研究进展*[J]. 材料导报, 2017, 31(21): 24-31.
[9] 彭智伟,刘志宇,傅刚. ZnO四足和多足纳米结构的制备和光致发光性能研究*[J]. 材料导报编辑部, 2017, 31(10): 16-18.
[10] 魏 剑, 赵莉莉, 张 倩, 聂证博. 碳纤维水泥基复合材料Seebeck效应研究现状[J]. 材料导报, 2017, 31(1): 84-89.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed