Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2436-2443    https://doi.org/10.11896/cldb.18040272
  高分子与聚合基复合材料 |
铀(Ⅵ)在氧化锌修饰聚丙烯腈纤维上的吸附行为
黄国庆1,2, 白震媛1, 陈兆文2, 刘琦1, 王君1
1 哈尔滨工程大学材料科学与化学工程学院,哈尔滨 150001;
2 中国船舶重工集团公司第七一八研究所,邯郸 056027
Adsorption Behavior of Uranium(Ⅵ) on Zinc Oxide-modified Polyacrylonitrile Fibers
HUANG Guoqing1,2, BAI Zhenyuan1, CHEN Zhaowen2, LIU Qi1, WANG Jun1
1 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001;
2 The 718th Research Institute of CSIC, Handan 056027
下载:  全 文 ( PDF ) ( 3025KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究通过溶剂热自组装将氧化锌(ZnO)纳米棒阵列原位生长在聚丙烯腈纤维(PANF)表面,成功合成ZnO/PANF复合材料。ZnO的引入有效地增加了PANF表面的活性位点,从而改善了纯PANF吸附容量小的问题。采用扫描电子显微镜对材料形貌进行表征,并开展一系列静态吸附实验,研究了铀溶液的pH值、初始浓度、吸附时间及温度等因素对U(Ⅵ)吸附的影响。ZnO/PANF复合材料对U(Ⅵ)的饱和吸附量可达248.14 mg·g-1(298.15 K,pH=6.0,C0=200 mg· L-1,t=180 min),符合准二级动力学模型以及Langmuir等温吸附模型,且吸附是一个吸热、自发过程;通过离子竞争实验以及循环吸脱附实验,验证了ZnO/PANF复合材料具有良好的选择性和循环利用率。值得注意的是,ZnO/PANF复合材料对低浓度铀的去除率可达89%,在真实海水以及模拟受放射性废物污染的海水中,ZnO/PANF复合材料对铀的去除率也均能达到45%以上,证明该吸附剂在海水提铀领域的潜在能力。通过IR和XPS证明该复合材料主要是通过表面的-COOH以及Zn-O中的含氧基团实现对U(Ⅵ)的吸附。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄国庆
白震媛
陈兆文
刘琦
王君
关键词:  低浓度铀  氧化锌  聚丙烯腈纤维  吸附    
Abstract: In this study, the ZnO/PANF adsorbent was successfully synthesized by solvothermal self-assembly. The zinc oxide (ZnO) nanorod arrays were grown in situ on polyacrylonitrile fiber (PANF) surface. Due to the introduction of ZnO, the adsorbent effectively increases the active sites on the PANF surface, thereby improving the adsorption capacity of pure PANF. The scanning electron microscopy was used to characterize the material morphology. A series of batch adsorption experiments were carried out to study the effects of pH value and initial concentration of uranium solution, contact time and temperature on the adsorption of U (Ⅵ). The results showed that the optimal adsorption amount of U(Ⅵ) of ZnO/PANF adsorbent was 248.14 mg· g-1 at 298.15 K, pH=6, C0=200 mg· L-1, and t=180 min, which is consistent with the pseudo-se-cond-order kinetics model and the Langmuir isotherm model. The adsorption is an endothermic and spontaneous process. The adsorbent exhibits excellent ion selectivity and cycle reproducibility. It is worth noting that the removal efficiency of ZnO/PANF composites for low-concentration uranium is 89% and for real seawater and simulated seawater contaminated by radioactive waste can also reach more than 45%, demonstrating the potential of the adsorbent in the field of uranium extraction from seawater. Furthermore, the adsorption mechanisms of U(Ⅵ) by ZnO/PANF was detailed conducted by IR and XPS analysis, and could be ascribed to the oxygen-containing groups of -COOH and Zn-O.
Key words:  low concentration uranium    zinc oxide    polyacrylonitrile fiber    adsorption
                    发布日期:  2019-06-19
ZTFLH:  TQ424  
基金资助: 国家自然科学基金(NSFC 51603053);黑龙江省应用技术研究与开发计划国家项目省级资助(GX16A009);哈尔滨市应用技术研究与开发基金(2015RAQXJ038)
通讯作者:  zhqw1888@sohu.com   
作者简介:  黄国庆,中船重工第七一八研究所高级工程师。2010年9月至2014年1月,在吉林大学获得微电子学与固体电子学博士,毕业后到中船重工第七一八研究所工作。以第一作者在国外期刊发表论文2篇,申请国家发明专利5篇,其中授权专利3项。研究工作主要围绕先进功能材料和海水提铀方面。王君,哈尔滨工程大学教授,博士研究生导师。1996年毕业于吉林大学化学系物理化学专业,获理学学士学位。2007年毕业于哈尔滨工程大学材料学专业,获工学博士学位。以第一/通讯作者在国际知名刊物发表SCI检索论文200余篇,其中6篇论文被评为ESI高被引论文,1篇被评为热点论文;获授权国家发明专利26项。其团队主要研究方向包括:海洋中低浓度铀富集与分离纯化;长效海洋防污涂料开发与工程化应用;仿生功能材料设计与性能研究。
引用本文:    
黄国庆, 白震媛, 陈兆文, 刘琦, 王君. 铀(Ⅵ)在氧化锌修饰聚丙烯腈纤维上的吸附行为[J]. 材料导报, 2019, 33(14): 2436-2443.
HUANG Guoqing, BAI Zhenyuan, CHEN Zhaowen, LIU Qi, WANG Jun. Adsorption Behavior of Uranium(Ⅵ) on Zinc Oxide-modified Polyacrylonitrile Fibers. Materials Reports, 2019, 33(14): 2436-2443.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040272  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2436
1 Tsouris C. Nature Energy, 2017, 2,17022.
2 Endrizzi F, Rao L.Chemistry, 2015, 20(44),14499.
3 Jungseung Kim, Costas Tsouris, Richard T. Separation Science & Technology, 2013, 48(3),367.
4 Onishi H, Sekine K. Talanta, 1972, 19(4),473.
5 Schmitt P, Beer P D, Drew M G B, et al. Tetrahedron Letters, 1998, 39(35),6383.
6 Alattar L, Dyer A. Journal of Materials Chemistry, 2002, 12(5),1381.
7 Ladshaw A P, Kuo L J, Strivens J E, et al. Industrial & Engineering Chemistry Research, 2017, 56(8), 27894.
8 Piechowicz M, Abney C W, Thacker N C, et al. ACS Applied Materials & Interfaces, 2017, 9(33),27894.
9 Zeng J Y, Zhang H, Sui Y, et al. Industrial & Engineering Chemistry Research, 2017, 56 (17),5021.
10 Ganesh R, Robinson K G, Chu L, et al. Water Research, 1999, 33(16),3447.
11 Khannanov A, Nekljudov V V, Gareev B, et al.Carbon, 2017, 115,394.
12 Coleman S J, Coronado P R, Maxwell R S, et al. Environmental Science & Technology, 2003, 37(10),2286.
13 Al-Hobaib A S, Al-Suhybani A A. Journal of Radioanalytical & Nuclear Chemistry, 2014, 299(1),559.
14 Ulusoy H I·, S,ims,ek S. Journal of Hazardous Materials, 2013, 254-255(6),397.
15 Yuan Y, Yang Y, Ma X, et al. Advanced Materials, 2018, 30(12), 1706507.
16 Liu J, Li J, Yang X, et al. Materials Letters, 2013, 97(8),177.
17 Song X M, Tan L C, Ma H Y, et al. Dalton Transactions, 2017, 46(10), 3347.
18 Wang G, Liu J, Wang X, et al.Journal of Hazardous Materials, 2009, 168(2),1053.
19 Wang Y, Chen Y, Liu C, et al.Chemical Engineering Journal, 2017, 316,936.
20 Sun Q, Aguila B, Perman J, et al. Journal of the American Chemical Society, 2017, 139(7), 2786.
21 Yang P P, Liu Q, Liu J Y, et al. Journal of Materials Chemistry A, 2017, 5(34), 17933.
22 Zhu J, Liu Q, Liu J, et al. Environmental Science Nano, 2018, 5,467.
23 Cui D N, Yang Q, Su X L, et al.Jiangxi Chemical Industry, 2015(1),28(in Chinese).
崔丹妮, 杨倩, 苏晓龙,等. 江西化工, 2015(1),28.
24 Li D, Egodawatte S N, Kaplan D I, et al. Environmental Science & Technology, 2017, 51,14330.
25 Husnain S M, Kim H J, Um W, et al. Industrial & Engineering Chemistry Research, 2017, 56(35),9821.
26 Islam M, Mishra P C, Patel R. Journal of Hazardous Materials, 2011, 189(3),755.
27 Zhang Z, Dong Z, Wang X, et al.Chemical Engineering Journal, 2018, 341,208.
28 Yang P, Liu Q, Liu J, et al. Industrial & Engineering Chemistry Research, 2017, 56(13),3588.
29 Jia Z. Study on the grafting modification of protein onto surface of polyacrylonitrile fiber. Ph.D. Thesis, Harbin Institute of Technology, China, 2008(in Chinese).
贾曌. 聚丙烯腈纤维的蛋白质表面接枝改性研究. 博士学位论文, 哈尔滨工业大学, 2008.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[3] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[4] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[5] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[6] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[7] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[8] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[9] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[10] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[11] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[12] 王朋, 肖迪, 梁妮, 周日宇, 张迪. 电荷辅助氢键的形成机制及环境效应研究进展[J]. 材料导报, 2019, 33(5): 812-818.
[13] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[14] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[15] 王龙江, 李永国, 俞杰, 樊惠玲, 吴波, 韩丽红, 李彦樟, 乔太飞. 三维有序大孔铜基吸附剂的制备及除碘性能[J]. 材料导报, 2019, 33(4): 660-664.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed