Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 1000-1005    https://doi.org/10.11896/cldb.201906016
  金属与金属基复合材料 |
Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理
杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰
中国民航大学中欧航空工程师学院,天津 300300
Corrosion Inhibiting Behaviors and Mechanism of Ti-6Al-4V in Hydrofluoric-Nitric Pickling Solutions
DU Juan, LIU Qingmao, WANG Fusheng, SONG Xiaoxiao, HU Xuelan
Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300
下载:  全 文 ( PDF ) ( 3057KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本工作利用失重法、扫描电子显微镜(SEM)、金相显微镜和电化学方法研究金莲橙OOO、铜铁灵、硫脲对钛合金在氢氟酸-硝酸混合溶液中的缓蚀作用,并通过接触角、表面张力法、红外光吸收谱(FTIR)研究缓蚀过程与机理。失重法、SEM测试和电化学方法都表明,当酸洗液中的氢氟酸与硝酸浓度比为1∶37.5时,三种缓蚀剂缓蚀效果排序为:金莲橙OOO>铜铁灵>硫脲。金莲橙OOO浓度越高,钛合金表面呈现的疏水性越强,缓蚀效果越好。表面张力随缓蚀剂浓度的增加呈线性减小趋势,达到临界胶束浓度后,钛合金表面的缓蚀剂分子吸附速率达到平衡,表面张力变化逐渐稳定,此时吸附效果最好。金莲橙OOO属于综合吸附膜型缓蚀剂,通过多中心吸附的方式生成大面积疏水膜,其缓蚀效果最好且随着浓度的增加而增强,在最佳浓度1.2 mmol/L下可保证钛合金的腐蚀失重在5.5 mg/cm2左右,缓蚀率为79%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜娟
刘青茂
王付胜
宋肖肖
胡雪兰
关键词:  Ti-6Al-4V钛合金  氢氟酸-硝酸  电化学  吸附行为  傅里叶红外光谱(FTIR)    
Abstract: This study proposes the optimal type and ratios of acid/inhibitor as the pickling solutions from tropeolin OOO, cupferron and thiourea. The inhibitors and their action principles were respectively investigated through weight-loss method, scanning electron microscopy, metallographic microscopy, electrochemical method, contact angle and surface tension measurement, infrared spectroscopy. Results indicated that, tropeolin OOO has the most qualified inhibition effect amongst the above-mentioned three inhibitors, owning to its considerable hydrophobic film through the effect of poly-centric adsorption when the ratio of hydrofluoric/nitric acid approaches 1∶37.5. In addition, the increase of tropeolin OOO concentration can help to achieve enhanced inhibition performance, which makes it capable of guaranteeing a minimum weight-loss of 5.5 mg/cm2 and a maximum inhibition ratio of 79% at the concentration of 1.2 mmol/L. Besides, tropeolin OOO packs the metal surface via a multi-center adsorption mechanism and forms a layer of large-area hydrophobic film that can resist more solution with higher tropeolin OOO concentration. Moreover, the surface tension firstly decreases linearly as the inhibitor concentration increases, and then it approximates a steady value when the concentration reaches CMC (critical micelle concentration). In this case, the inhibitor molecules are adsorbed at a balanced rate and create best inhibition circumstance for Ti-6Al-4V.
Key words:  Ti-6Al-4V    hydrofluoric-nitric acids    electrochemical    adsorption    Fourier transform infrared spectroscopy (FTIR)
               出版日期:  2019-03-25      发布日期:  2019-04-03
ZTFLH:  TG174.42  
基金资助: 中央高校基本业务费项目中国民航大学专项资助(3122018z006)
作者简介:  杜娟,2012年毕业于天津科技大学,获得博士学位。
引用本文:    
杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
DU Juan, LIU Qingmao, WANG Fusheng, SONG Xiaoxiao, HU Xuelan. Corrosion Inhibiting Behaviors and Mechanism of Ti-6Al-4V in Hydrofluoric-Nitric Pickling Solutions. Materials Reports, 2019, 33(6): 1000-1005.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906016  或          http://www.mater-rep.com/CN/Y2019/V33/I6/1000
1 Vermesse E, Mabru C, Arurault L. Applied Surface Science,2013,285(19),629.
2 Bhola S M, Bhola R, Mishra B, Olson D L. Journal of Materials Science:Materials in Medicine,2011,22(4),773.
3 Hosseini S M A, Amiri M. Journal of the Iranian Chemical Society,2007,4(4),451.
4 Hosseini S M A, Sakari M, Quanbari M. Journal of Electrochemical Science,2007,2(12),935.
5 Chauhan J S, Gupta D K. Journal of Chemistry,2009,6(4),975.
6 Xie L, Wang X X. Rare Metal Materials and Engineering,2006,35(8),1219(in Chinese).
谢雷, 王小祥. 稀有金属材料与工程,2006,35(8),1219.
7 Cai D Z, Sang G, Wang Q F, et al. Rare Metal Materials and Enginee-ring,2014,43(6),1447(in Chinese).
蔡定洲, 桑革, 王庆富, 等. 稀有金属材料与工程,2014,43(6),1447.
8 You L M, Peng D Q, Zhou L Y, et al. In: International Conference on Manufacturing Science and Engineering, China,2015.
9 Dai S J, Zhu Y Y, Chen F. Journal of Chongqing Institute of Technology,2016,30(4),27(in Chinese).
戴世娟,朱远因,陈锋.重庆理工大学学报,2016,30(4).27.
10 Wang Y S. Adsorption and corrosion inhibition of several organic inhibitors on carbon steel in simulated concrete pore solution. Master’s Thesis, Beijing University of Chemical Technology, China,2016(in Chinese).
王怡珊. 模拟混凝土孔隙液中几种有机缓蚀剂在碳钢表面吸附及缓蚀行为研究. 硕士学位论文, 北京化工大学,2016.
11 Liu H Q, Hu J, Zhou X Z, et al. Journal of Surfactants and Detergents,2015,18(6),1025.
12 Xu Y Z, Huang Y, Ying L, et al. Inhibitor Journal of Materials Engineering,2016,44(10),100(in Chinese).
徐云泽, 黄一, 盈亮,等. 材料工程,2016,44(10),100.
13 Wen C S, Yu Y T. Surface & Coatings Technology,2004,176(3),337.
14 Wang B, Xu L N, Li D Y, et al. Journal of Materials Engineering,2017,45(5),38(in Chinese).
王贝, 许立宁, 李东阳, 等. 材料工程,2017,45(5),38.
15 Luo Y J, Luo Y B, Lu T Y, et al. Materials Review A: Review Papers,2016,30(9),92(in Chinese).
罗源军, 罗源兵, 吕太勇, 等. 材料导报:综述篇,2016,30(9),92.
16 Cao C N, Zhang J Q. Introduce of electrochemical impedance spectroscopy, Beijing Science Press, China,2002(in Chinese).
曹楚南, 张鉴清. 电化学阻抗谱导论, 北京科技出版社, 2002.
17 Saeedikhani M, Javidi M, Vafakhah S. Transactions of Nonferrous Metals Society of China,2017,12(3),711.
18 Hu G. The study on dissolution behavior of corrosion processing and fatigue performance after processing for titanium alloy. Master’s Thesis, Nanchang Hangkong University,China, 2011(in Chinese).
胡舸. 钛合金腐蚀加工溶解行为和加工后疲劳性能研究. 硕士学位论文, 南昌航空大学, 2011.
19 Charitha B P, Padmalatha R. Carbohydrate Polymers,2017,168(10),337.
20 Prasad K V S, Prabhakar G, Rao S V M M, et al. Journal of Chemistry,2003,15(2),1170.
21 Li H H. Study of adsorption behavior and electrochemical methods for corrosion inhibitors in acidic solutions. Master’s Thesis, Huadong University of Science and Technology, China, 2006(in Chinese).
李海洪. 酸性介质中缓蚀剂吸附行为与电化学测试方法研究. 硕士学位论文, 华中科技大学,2006.
22 Zhao P. Corrosion inhibition effect of phthalocyanine compounds and goldthread extractive on mild steel and its quantum chemistry research. Master’s Thesis, University of Chinese Academy of Sciences, China, 2005(in Chinese).
赵澎. 酞菁化合物、黄连提取物对碳钢的缓蚀作用及其量子化学研究. 硕士学位论文, 中国科学院研究生院(海洋研究所),2005.
23 Abo M, Alonso A, Sánchez A, et al. Science of the Total Environment,2017,598(10),949.
24 Jin J, Sun K, Wang Z, et al. Science of the Total Environment,2017,598(12),789.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[3] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[4] 施方长, 王玉, 高延敏. 改性含N小分子用于金属表面锈层处理对环氧涂层防腐性能的研究[J]. 材料导报, 2019, 33(z1): 523-526.
[5] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[6] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[7] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[8] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[9] 王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
[10] 卜红梅, 李肖蔚, 齐建涛, 李焰. 利用微电极阵列技术研究合金的腐蚀[J]. 材料导报, 2019, 33(23): 3963-3970.
[11] 尹晓丽, 于思荣, 胡锦辉. Ni3S2微纳米结构超疏水表面的制备及耐蚀性能[J]. 材料导报, 2019, 33(20): 3372-3376.
[12] 计晓琴, 孙德林, 余先纯, 郝晓峰, 陈新义, 朱志红. Fe3+掺杂活化木质素基木材陶瓷的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3390-3395.
[13] 王英, 阮威, 唐仁衡, 肖方明, 孙泰, 黄玲. 不同粒径纳米硅制备Si@C/石墨负极材料及其电化学性能[J]. 材料导报, 2019, 33(18): 3021-3025.
[14] 王永亮, 王春锋, 马荣鑫, 韩志东. 低缺陷密度石墨烯与Co3O4复合材料的制备及电化学性能[J]. 材料导报, 2019, 33(18): 3156-3160.
[15] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed