Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3156-3160    https://doi.org/10.11896/cldb.19030268
  第20届全国高技术陶瓷学术年会 |
低缺陷密度石墨烯与Co3O4复合材料的制备及电化学性能
王永亮1, 王春锋1, 马荣鑫1, 韩志东1, 2
1 哈尔滨理工大学材料科学与工程学院,哈尔滨 150040
2 哈尔滨理工大学工程电介质及其应用教育部重点实验室,哈尔滨 150040
Preparation and Electrochemical Property of Graphene/Co3O4 Composite
WANG Yongliang1, WANG Chunfeng1, MA Rongxin1, HAN Zhidong1,2
1 School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040
2 Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150040
下载:  全 文 ( PDF ) ( 2993KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Co3O4/石墨烯复合材料以其较高的比电容和良好的稳定性成为研究的热点。该材料研究中大多采用含官能团较多及分散性较好的氧化石墨烯,然而氧化石墨烯的缺陷较多,将其用于制备复合材料会限制复合材料电化学性能的提高。此外,复合材料制备往往涉及将氢氧化钴/氧化石墨烯复合物热处理获得Co3O4/石墨烯复合材料的过程。本工作选用了机械剥离法制备低缺陷密度石墨烯纳米片(Graphene nanoplatelets, GNP),实现了石墨烯纳米片与钴离子均匀稳定的分散,进而采用一步法(无需煅烧)制备Co3O4/GNP复合材料,探讨了Co3O4/GNP复合材料的相关性能。
   机械剥离法制备的GNP的碳原子层数约为5层,层间距为3.6 ,且拉曼光谱中ID/IG比值仅为0.07,表明机械剥离法制备的GNP比还原法制备的氧化石墨烯具有较低的缺陷密度。以H2O2为氧化剂,采用一步法制备了Co3O4/GNP复合材料。Co3O4纳米颗粒以方形为主,平均粒径约为12 nm,且均匀负载于GNP片层。电化学研究结果表明,当m(Co3O4):m(GNP)=8:1时,Co3O4/GNP复合材料具有最优的比电容值,达到了542 F·g-1,内阻仅为1.57 Ω。复合材料的内阻与GNP的添加量成反比,当m(Co3O4):m(GNP)=3:1时,复合材料的内阻仅为0.89 Ω。
   本工作创新性地实现了一步法制备Co3O4/GNP复合材料。机械剥离法制备石墨烯确保了GNP具有低缺陷密度,一步法确保了Co3O4纳米颗粒均匀负载于GNP表面。优化Co3O4和GNP配比,制得的复合材料的比电容可达542 F·g-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王永亮
王春锋
马荣鑫
韩志东
关键词:  石墨烯  四氧化三钴  超级电容器  电化学性能    
Abstract: Co3O4/graphene composites have drawn more and more attentions, which was due to their high specific capacitance and good stability. However, reduced graphene oxide was commonly used for Co3O4/graphene composites, which was due to the groups on graphene sheets and its good dispersibility. The defects of reduced graphene oxide (RGO) limited the electrochemical properties of the composite. Moreover, heat treating of hydroxide/graphene oxide was commonly involved for synthesis of Co3O4/graphene composite. In this paper, low-defect density graphene nanoplatelets (GNP) were prepared by mechanical exfoliation, and a stable suspension of GNP and Co ions was obtained. The Co3O4/GNP composites were obtained by one-step method without further heat treatment. The thickness of the GNP sheets synthesized via mechanical exfoliation was about five layers and the layer spacing was 3.6 . The ID/IG ratio from the Raman spectrum was only 0.07, indicating that the GNP has lower defects density than that of RGO. Co3O4/GNP composites were prepared by one-step method using H2O2 as oxidant. The average particle size of square Co3O4 nanoparticles was about 12 nm. Electrochemical studies show that the specific capacitance of Co3O4/GNP composites reached 542 F·g-1 when weight ratio of Co3O4 and GNP was 8:1, and the internal resistance was only 1.57 Ω. The internal resistance of the composite increased with the amount of GNP. When weight ratio of Co3O4 and GNP was 3:1, the internal resistance was only 0.89 Ω. This work realized one-step synthesis of Co3O4/graphene composites. The graphene synthesized via mechanical exfoliation has a low defect density, and the one-step method ensures uniformly distribution of Co3O4 nanoparticles on GNP surface. The specific capacitance of composites reached 542 F·g-1.
Key words:  graphene    Co3O4    supercapacitor    electrochemical property
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TQ02  
基金资助: 国家自然科学基金(51602084);黑龙江省高校青年创新人才项目(UNPYSCT-2017090);黑龙江省自然科学基金(YQ2019E030);黑龙江省普通高校基本科研业务费专项资金资助(LGYC2018JC032)
作者简介:  王永亮于2005年6月在哈尔滨工业大学无机非金属材料工程专业获得工学学士学位,于2011年6月在哈尔滨工业大学材料科学与工程专业获得工学博士学位,现为哈尔滨理工大学副教授。已发表学术论文20余篇,申请国家发明专利8项,其中授权5项。同时,入选黑龙江省高校青年创新人才。研究方向主要围绕石墨烯及其复合材料和有机/无机纳米复合材料,开展材料结构与性能调控研究,主持包括国家自然科学基金青年项目、中国博士后科学基金面上项目、黑龙江省高校青年创新人才项目、黑龙江省自然科学基金项目等。
引用本文:    
王永亮, 王春锋, 马荣鑫, 韩志东. 低缺陷密度石墨烯与Co3O4复合材料的制备及电化学性能[J]. 材料导报, 2019, 33(18): 3156-3160.
WANG Yongliang, WANG Chunfeng, MA Rongxin, HAN Zhidong. Preparation and Electrochemical Property of Graphene/Co3O4 Composite. Materials Reports, 2019, 33(18): 3156-3160.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030268  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3156
[1] Li X, Zheng F, Luo Y, et al. Materials Review B:Research Papers, 2018, 32(6), 1949(in Chinese).李祥, 郑峰, 罗援, 等. 材料导报:研究篇. 2018, 32(6), 1949.
[2] Dubal D P, Kim J G, Kim Y, et al. Energy Technology, 2014, 2(4), 325.
[3] Liu S, Sun S, You X Z.Nanoscale, 2014, 6(4), 2037.
[4] Zhai Y, Dou Y, Zhao D, et al. Advanced Materials, 2011, 23(42), 4828.
[5] Buglione L, Pumera M. Electrochemistry Communications, 2012, 17(1), 45.
[6] Pandolfo A G, Hollenkamp A F.Journal of Power Sources, 2006, 157(1), 11.
[7] Yang H, Jiang J, Zhou W, et al. Nanoscale Research Letters, 2011, 6(1), 531.
[8] Wang H T, Zhang L, Tan X H, et al. Journal of Physical Chemistry C, 2011, 115(35), 17599.
[9] Dhawale D S, Dubal D P, Jamadade V S, et al. Synthetic Metals, 2010, 160(5), 519.
[10] Lee C T. Journal of Industrial & Engineering Chemistry, 2012, 18(1), 433.
[11] Wang H J, Peng C, Peng F, et al. Materials Science and Engineering B, 2011, 176(14), 1073.
[12] El-Kady M F, Kaner R B. Science, 2012, 335(6074), 1326.
[13] Janes A, Kurig H, Lust E. Carbon, 2007, 45(6), 1226.
[14] Zheng C, Qian W Z, Cui C J.Carbon, 2012, 50(14), 5167.
[15] Nicolosi V, Chhowalla M, Kanatzidis M G, et al. Science, 2013, 340(6139), 1420.
[16] Wang Y, Foo C Y, Hoo T K, et al.Chemistry-A European Journal, 2010, 16(12), 3598.
[17] Zhang X, Yu P, Zhang H, et al. Electrochimica Acta, 2013, 89, 523.
[18] Paravannoor A, Ranjusha R, Asha A M, et al.Chemical Engineering Journal, 2013, 220(11), 360.
[19] Park S, Kim S.Electrochimica Acta, 2013, 89(1), 516.
[20] Fu X L, Peng Z J, Li D, et al. Nanotechnology, 2011, 22(17), 175601.
[21] Ramachandran R, Saranya M, Kollu P, et al.Electrochimica Acta, 2015, 178, 647.
[22] Avetta P, Sangermano M, Lopez-Manchado M, et al. Journal of Photochemistry & Photobiology A Chemistry, 2015, 312, 88.
[23] Wang Y L, Ma R X, Liu L L, et al. Nano Brief Reports & Reviews, 2017, 12(8), 1750102.
[24] Deng X, Li J, Zhu S, et al. Journal of Alloys & Compounds, 2017, 693, 16.
[25] Sasmaz M, Yakuphanoglu F. Journal of Nanoelectronics & Optoelectro-nics, 2016, 11(11), 225.
[26] Chen L, Hu J, Richards R, et al. Nanoscale, 2010, 2(9), 1657.
[27] Lü Y, Zhan W, He Y, et al.ACS Applied Materials & Interfaces,2014, 6(6), 4186.
[28] Ghosh D, Giri S, Das C K. ACS Sustainable Chemistry & Engineering, 2013, 1(9), 1135.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[3] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[4] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[5] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[6] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[7] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[8] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[9] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[10] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[11] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[12] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[13] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[14] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[15] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed